|Table of Contents|

Numerical Simulation of Vertical Bearing Capacity of Closed Underground Diaphragm Wall(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2010年第03期
Page:
311-315
Research Field:
地质工程
Publishing date:

Info

Title:
Numerical Simulation of Vertical Bearing Capacity of Closed Underground Diaphragm Wall
Author(s):
ZHANG Bo1 CHEN Xiao-dong2
(1.Gansu Investigation Institute of Hydrogeology and Engineering Geology, Lanzhou 730020, Gansu, China; 2.CCCC Highway Consultants Company Limited, Beijing 100088, China)
Keywords:
underground diaphragm wall loess vertical bearing capacity numerical simulation FLAC-3D
PACS:
P642;TU43
DOI:
-
Abstract:
Based on the indoor test of model, the differences of vertical bearing capacity of closed and single underground diaphragm walls were discussed, the software FLAC-3D was used in numerical simulation in order to supply the indoor test of model, the influences of deformation modulus, density, cohesion and internal frictional angle on vertical bearing capacity of closed underground diaphragm walls were studied. The result showed that the mechanism of outside friction resistance in closed and single underground diaphragm walls were mostly the same, but the mechanism of inside friction resistance in closed underground diaphragm wall was more complex because of the existence of core; closed and single underground diaphragm walls could be considered as end support friction type; vertical displacement and wall axial force deceased significantly with the increase of deformation modulus in soil around the wall; the influence of density on sedimentation of closed underground diaphragm wall was not significant; effect of cohesion on lateral friction drag was controlled by relative displacement between the soils of underground diaphragm wall; internal frictional angle had considerable influence on the vertical bearing capacity of underground diaphragm wall only when the sedimentation of underground diaphragm wall was more than 20 mm.

References:

[1] 丛蔼森.地下连续墙的设计施工与运用[M].北京:中国水利水电出版社,2001.
[2] 李 涛.铁路桥梁连续墙挖井基础设计方法的试验研究[J].中国铁道科学,1997,18(2):46-53.
[3] 于书翰.黄土地区拱桥桥台人工开挖地下连续墙基础[J].西安公路交通大学学报,2000,20(4):32-35.
[4] 中交公路规划设计院有限公司.黄土地区大跨度桥梁地下连续墙和箱型基础的应用研究[R].北京:中交公路规划设计院有限公司,2007.
[5] 周建军,饶思礼,张有光,等.虎门大桥西锚碇大型混合基础的设计与施工[J].桥梁建设,1995(2):44-47.
[6] 郭慧光,孙 旻,徐 伟.地墙“巨无霸”——武汉阳逻长江公路大桥45 m埋深的南锚碇圆形地下连续墙施工及受力特性分析[J].建筑施工,2004,26(3):188-190.
[7] 常 红,郑 越.竖向承载地下连续墙的沉降计算[J].中国公路学报,2003,16(3):74-77.
[8] 傅德明,王庆国,夏明耀.地下连续墙垂直承载力现场试验研究[J].地下工程与隧道,1997(2):24-31.
[9] 常 红,夏明耀,傅德明.地下连续墙垂直承载力室内模拟试验研究[J].同济大学学报:自然科学版,1998,26(3):279-283.
[10] 李 农.地下连续墙垂直承载力试验研究[D].上海:同济大学,1993.
[11] 周生华.地下连续墙垂直承载机理试验研究[D].上海:同济大学,1991.
[12] 王卫东.承重地下连续墙与高层建筑桩箱基础及地基共同作用的理论和实测研究[D].上海:同济大学,1996.
[13] 刘 波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
[14] 杨治国,侯恩科,李琰庆.FLAC-3D与理正软件在基坑支护设计中的应用[J].西安科技大学学报,2007,27(2):224-227.
[14] 殷宗泽,朱 泓,许国华.土与结构材料接触面的变形及其数学模拟[J].岩土工程学报,1994,16(3):14-22.
[16] 朱 泓,殷宗泽.土与结构材料接触面性能研究综述[J].河海科技进展,1994,14(4):1-8.
[17] 机械工业勘察设计研究院.黄土地区大跨度桥梁地下连续墙和箱型基础的应用研究河津—临猗一级公路K23+385天桥湿陷性黄土的试验研究报告[R].西安:机械工业勘察设计研究院,2005.
[18] 李 晋,谢永利,冯忠居.土体参数对大直径空心桩承载性状影响的仿真分析[J].工程地质学报,2005,13(1):129-134.

Memo

Memo:
-
Last Update: 2010-09-20