|Table of Contents|

Distribution and Impact on Reservoir Properties of Authigenic Carbonate Minerals in Pyroclastic Rocks of Beier Depression, Hailaer Basin(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2011年第03期
Page:
253-260
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Distribution and Impact on Reservoir Properties of Authigenic Carbonate Minerals in Pyroclastic Rocks of Beier Depression, Hailaer Basin
Author(s):
DONG Lin-sen12LIU Li1ZHU De-feng3GUI Li-li1YU Miao1
1. School of Earth Sciences, Jilin University, Changchun 130061, Jilin, China; 2. Key Laboratory of State OceanicAdministration for Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State OceanicAdministration, Qingdao 26606
Keywords:
pyroclastic rock authigenic carbonate mineral distribution characteristic deep fault reservoir property Beier Depression Hailaer Basin
PACS:
P618.13;TE122
DOI:
-
Abstract:
In order to verify the distribution and impact on reservoir properties of authigenic carbonate minerals in pyroclastic rocks, pyroclastic rocks in Beier Depression of Hailaer Basin were taken as an example; the type of authigenic carbonate minerals were investigated; the distribution and impact on reservoir properties were discussed according to the statistic of carbonate content and reservoir properties for more than 50 wells. The results showed that authigenic carbonate minerals in pyroclastic rocks of Beier Depression, Hailaer Basin were mainly calcite and dolomite, followed by siderite, dawsonite and ankerite; there were two high-value zones of carbonate content vertically, in 1 500-1 900 m and 2 200-2 700 m respectively, and the former mainly contained intergrowth calcite cements, granular calcite cements and siderite, the latter mainly contained late calcite, dolomite, ankerite and dawsonite; the most favorable facies belts for the development of carbonate cements was sublacustrine fan facies,followed by fan-braided fluvial river deltas facies; the carbonate content in wells close Deerbugan deep fault was higher than that in wells away from it, and there were dawsonites in wells De2,De6 and De8 near the fault, mainly because the fault was the channel for CO2 dispersion and CO2-rich fluid could react with the surrounding rocks and then the carbonate minerals formed; the carbonate contents in ignimbrite and tuff were higher than that in sedimentary tuff, tuffaceous sandstone and common sandstone, mainly because the contents of metal ions in pyroclastic material were high, and the ions were easy to release, which combined with carbonate ions to form carbonate minerals; the porosity and permeability in Beier Depression were negatively correlated with the content of carbonate.

References:

[1] 冯志强,任延广,张晓东,等.海拉尔盆地油气分布规律及下步勘探方向[J].石油地质,2004,9(4):19-22.
[2] 刘 立,曲希玉,董林森,等.东北及邻区中生代盆地片钠铝石的分布、产状及其油气地质意义[J].吉林大学学报:地球科学版,2009,39(1):1-8.
[3] 董林森,刘 立,张 革,等.火山碎屑岩对CO2的矿物捕获能力[J].沉积学报,2010,28(3):572-578.
[4] 李 军,王德发,范洪军.甘肃酒泉盆地青西油田裂缝特征及成因分析[J].现代地质,2007,21(4):691-696.
[5] 王建伟, 鲍志东, 陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响——以鄂尔多斯盆地西北部二叠系为例[J].地质科学,2005,40(3):429-438.
[6] 吴运强,常秋生,蒋宜勤,等.气孔状火山碎屑岩储集层成因特征及油气勘探意义[J].新疆石油地质,2006,27(4):166-168.
[7] 王海燕,刘 立,高玉巧,等.海拉尔盆地贝尔凹陷南屯组火山碎屑岩成岩作用的讨论[J].世界地质,2005,24(3):219-224.
[8] 孙彦达,张民志.海拉尔盆地碳钠铝石特征及其地质意义[J].石油实验地质,2006,28(5):504-506.
[9] 程日辉,沈艳杰,颜景波,等.海拉尔盆地火山碎屑岩的成岩作用[J].岩石学报,2010,26(1):47-54.
[10] Pettijohn F J,Potter P E,Siever R.Sand and Sandstone[M].2nd Edition.New York:Springer,1987.
[11] Morad S.Carbonate Cementation in Sandstones:Distribution Patterns and Geochemical Evolution[C]∥Morad S.Carbonate Cementation in Sandstones.Boston:Wiley-Blackwell,1998:1-26.
[12] 罗静兰,郭德运,尹 鹏,等.蟠龙探区长2砂岩储层物性的控制因素[J].西北大学学报:自然科学版,2003,33(6):723-728.
[13] 朱如凯,郭宏莉,高志勇,等.塔里木盆地北部地区古近系—白垩系储层质量影响因素探讨[J].地质论评,2007,53(5):624-630.
[14] 王卓卓,梁江平,李国会,等.成岩作用对储层物性的影响及与沉积环境的关系——以鄂尔多斯盆地劳山地区为例[J].天然气地球科学,2008,19(2):171-177.
[15] Cade C A,Evans I J,Bryant S L.Analysis of Permeability Controls:a New Approach[J].Clay Minerals,1994,29:491-501.
[16] 吴根耀.白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质,2006,33(1):64-77.
[17] Graham S A,Hendrix M S,Johnson C L,et al.Sedimentary Record and Tectonic Implications of Mesozoic Rifting in Southeast Mongolia[J].GSA Bulletin,2001,113(12):1560-1579.
[18] Meng Q R,Hu J M,Jin J Q,et al.Tectonics of the Late Mesozoic Wide Extensional Basin System in the China-Mongolia Border Region[J].Basin Research,2003,15(3):397-415.
[19] 刘振彪,陈守田,张 财,等.贝尔凹陷的形成机制及其油气分布规律[J].石油地球物理勘探,1999,34(增):109-112.
[20] Roger N,McLean D,Bate R H,et al.Mongolia,Tamtsag Basin,Evidence for Widespread,High Quality,Mature Lower Cretaceous Source Rock[J].AAPG Bulletin,2000,84(9):1469.
[21] 伍 英,陈均亮,张 莹.海拉尔—塔木察格盆地构造带与油气关系[J].大庆石油学院学报,2009,33(3):31-35.
[22] Worden R H.Dawsonite Cement in the Triassic Lam Formation,Shabwa Basin,Yemen:a Natural Analogue for a Potential Mineral Product of Subsurface CO2 Storage for Greenhouse Gas Reduction[J].Marine and Petroleum Geology,2006,23(1):61-77.
[23] 刘怀波,吴智勇,Blatt H,等.俄克拉荷马州南哈桑气田斯普罗砂岩的成岩作用和孔隙演化[J].江汉石油学院学报,1995,17(2):1-9.
[24] 马艳萍,刘 立.大港滩海区第三系湖相混积岩的成因与成岩作用特征[J].沉积学报,2003,21(4):607-613.
[25] 常兴浩,张枝焕,李艳霞,等.黄骅坳陷三马地区中深层储层孔隙发育及主控因素分析[J].地球学报,2005,26(1):75-82.
[26] 刘 立,高玉巧,曲希玉,等.海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J].岩石学报,2006,22(8):2229-2236.
[27] 董林森,刘 立,曲希玉,等.松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J].吉林大学学报:地球科学版,2009,39(6):1031-1041.
[28] Ryzhenko B N.Genesis of Dawsonite Mineralization:Thermodynamic Analysis and Alternatives[J].Geochemistry International,2006,44(8):835-840.
[29] 张永旺,曾溅辉,高 霞,等.东营凹陷古近系储层碳酸盐胶结物分布特征及主控因素[J].吉林大学学报:地球科学版,2009,39(1):16-22.
[30] 高玉巧,刘 立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):1083-1088.
[31] May F.Alteration of Wall Rocks by CO2-rich Water Ascending in Fault Zones:Natural Analogues for Reactions Induced by CO2 Migrating Along Faults in Siliciclastic Reservoir and Cap Rocks[J].Oil and Gas Science and Technology,2005,60(1):19-32.
[32] Pettijohn F J,John F.Sedimentary Rocks[M].New York:Harper and Row,1975.
[33] Golubev S V,Pokrovsky O S,Schott J.Experimental Determination of the Effect of Dissolved CO2 on the Dissolution Kinetics of Mg and Ca Silicates at 25 ℃[J].Chemical Geology,2005,217(3/4):227-238.
[34] Flaathen T K,Gislason S R,Oelkers E H,et al.Chemical Evolution of the Mt.Hekla,Iceland,Groundwaters:a Natural Analogue for CO2 Sequestration in Basaltic Rocks[J].Applied Geochemistry,2009,24(3):463-474.
[35] Oelkers E H,Cole D R.Carbon Dioxide Sequestration:a Solution to a Global Problem[J].Elements,2008,4(5):305-310.
[36] Koljonen T,Siikavirta H,Zevenhoven R,et al.CO2 Capture,Storage and Reuse Potential in Finland[J].Energy,2004,29(9/10):1521-1527.
[37] 董林森,刘 立,曲希玉,等.CO2矿物捕获能力的研究进展[J].地球科学进展,2010,25(9):941-949.
[38] Schaef H T,McGrail B P.Dissolution of Columbia River Basalt Under Mildly Acidic Conditions as a Function of Temperature:Experimental Results Relevant to the Geological Sequestration of Carbon Dioxide[J].Applied Geochemistry,2009,24(5):980-987.
[39] Gudmundsson B T,Arnórsson S.Geochemical Monitoring of the Krafla and Námafjall Geothermal Areas,N-Iceland[J].Geothermics,2002,31(2):195-243.
[40] Gislason S R,Arnorsson S,Armannsson H.Chemical Weathering of Basalt in Southwest Iceland:Effects of Runoff,Age of Rocks and Vegetative/glacial Cover[J].American Journal of Science,1996,296:837-907.
[41] Dessert C,Dupré B,Gaillardet J,et al.Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle[J].Chemical Geology,2003,202(3/4):257-273.
[42] 张凡芹,王伟锋,王建伟,等.苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J].吉林大学学报:地球科学版,2006,36(3):365-369.
[43] 雷燕平,林畅松,刘景彦,等.贝尔凹陷下白垩统构造对沉积充填和砂体分布的控制[J].石油天然气学报,2008,30(2):25-29.
[44] 任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造:中国及邻区大地构造图简要说明[M].北京:地质出版社,1999.

Memo

Memo:
-
Last Update: 2011-09-20