|Table of Contents|

Scale Effects of the Magma-related Metallogenic Systems(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2014年第01期
Page:
1-9
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Scale Effects of the Magma-related Metallogenic Systems
Author(s):
LUO Zhao-hua SU Shang-guo LIU Cui
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Keywords:
magma metallogenic system scale effect small intrusion mineralization geometric scale time-scale Stock’s Law magma production
PACS:
P588.1
DOI:
-
Abstract:
The theory of large orebodies hosted in small intrusion emphasizes the relation between the geometrical scale of a magmatic intrusion and the efficiency of endogenic metallic mineralization. However, the essence of this relation is poorly understood till now. The basic problems related to the magma metallogenic system were briefly analyzed, and the intrinsic relations between the geometrical scale of an intrusion and several key factors controlling mineralization were focused. The published functional relation between the cooling duration and the migrating distance of solidus front in a magmatic intrusion was used to estimate the solidification time-scale of a magmatic intrusion. It is found that the living time-scale of the small intrusion is consistent with the time-scale required for forming a super-giant deposit. Based on Stock’s Law, the simulation suggests that the small intrusions containing melano-microgranular enclaves are characterized by rapid ascending of magma, which is consistent with the experimental observations showing positive relation of the fluid solubility of ore-forming metal to its pressure (P) and temperature (T). The relations of the magma production to the source decompression rate and the volatile concentration in the produced magma were analyzed. Accordingly, it is proposed that the magma production followed a huge volume of magmatism must decrease, and hence the ratio of fluid and melt increases gradually. Therefore, it is believed that a super-giant deposit can form immediately behind the extensive magmatism, and such a metallogenic process can be called as the post-batholith metallogenesis, taking the felsic magma metallogenic system as an example. In general, it is concluded that the scale effect of the magma metallogenic system is an important geological effect, and the analysis of scale effect supports the theory of giant deposit mineralized by the small intrusion.

References:

[1]卢欣祥.河南省秦岭—大别山地区燕山期中酸性小岩体的基本特征及成矿作用[J].中国区域地质,1985(3):115-123.[LU Xin-xiang.Basic Characteristics of Yanshanian Minor Intermediate-acid Rock Masses and Their Minerogenesis in the Qinling-Dabie Mountains Region,Henan Province[J].Regional Geology of China,1985(3):115-123.]
[2]罗照华,卢欣祥,刘翠,等.岩浆热液成矿理论的失败:原因和出路[J].吉林大学学报:地球科学版,2011,41(1):1-11.[LUO Zhao-hua,LU Xin-xiang,LIU Cui,et al.On Failing of the Magmatic Hydrothermal Metallogenic Theory:The Causes and the New Departure[J].Journal of Jilin University:Earth Science Edition,2011,41(1):1-11.]
[3]汤中立.中国的小岩体岩浆矿床[J].中国工程科学,2002,4(6):9-12.[TANG Zhong-li.Magmatic Ore Deposits in Small Rockbody in China[J].Engineering Science,2002,4(6):9-12.]
[4]汤中立,李小虎.两类岩浆的小岩体成大矿[J].矿床地质,2006,25(增):35-38.[TANG Zhong-li,LI Xiao-hu.Small Intrusions Forming Large Deposits in Two Types of Magma[J].Mineral Deposits,2006,25(S):35-38.]
[5]汤中立,徐刚,王亚磊,等.岩浆成矿新探索——小岩体成矿与地质找矿突破[J].西北地质,2012,45(4):1-16.[TANG Zhong-li,XU Gang,WANG Ya-lei,et al.The New Exploration of Magmatic Mineralization—Small Intrusion Mineralization and Geological Prospecting Breakthrough[J].Northwestern Geology,2012,45(4):1-16.]
[6]汤中立,钱壮志,姜常义,等.岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统[J].地球科学与环境学报,2011,33(1):1-9.[TANG Zhong-li,QIAN Zhuang-zhi,JIANG Chang-yi,et al.Trends of Research in Exploration of Magmatic Sulfide Deposits and Small Intrusions Metallogenic System[J].Journal of Earth Sciences and Environment,2011,33(1):1-9.]
[7]汤中立,闫海卿,焦建刚,等.中国小岩体镍铜(铂族)矿床的区域成矿规律[J].地学前缘,2007,14(5):92-103.[TANG Zhong-li,YAN Hai-qing,JIAO Jian-gang,et al.Regional Metallogenic Controls of Small-intrusion-hosted Ni-Cu(PGE) Ore Deposits in China[J].Earth Science Frontiers,2007,14(5):92-103.]
[8]汤中立,闫海卿,焦建刚,等.中国岩浆硫化物矿床新分类与小岩体成矿作用[J].矿床地质,2006,25(1):1-9.[TANG Zhong-li,YAN Hai-qing,JIAO Jian-gang,et al.New Classification of Magmatic Sulfide Deposits in China and Ore-forming Processes of Small Intrusive Bodies[J].Mineral Deposits,2006,25(1):1-9.]
[9]汤中立.中国镁铁?超镁铁岩浆矿床成矿系列的聚集与演化[J].地学前缘,2004,11(1):113-119.[TANG Zhong-li.The Accumulation and Evolution of Metallogenic Series of the Mafic-ultramafic Magmatic Deposits in China[J].Earth Science Frontiers,2004,11(1):113-119.]
[10]NALDRETT A J.Magmatic Sulfide Deposits:Geology,Geochemistry and Exploration[M].Berlin:Springer,2004.
[11]罗照华,卢欣祥,陈必河,等.透岩浆流体成矿作用导论[M].北京:地质出版社,2009.[LUO Zhao-hua,LU Xin-xiang,CHEN Bi-he,et al.Introduction to the Metallogenic Theory on the Transmagmatic Fluids[M].Beijing:Geological Publishing House,2009.]
[12]罗照华,陈必河,江秀敏,等.利用宽谱系岩墙群进行勘查靶区预测的初步尝试:以南阿拉套山为例[J].岩石学报,2012,28(7):1949-1965.[LUO Zhao-hua,CHEN Bi-he,JIANG Xiu-min,et al.A Preliminary Attempt for Targeting Prospecting Districts Using the Wide Composition-spectrum Dike Swarms:An Example of the South Alatao Mountains,Xinjiang,China[J].Acta Petrologica Sinica,2012,28(7):1949-1965.]
[13]郭晶,罗照华,刘晓,等.利用宽谱系岩墙群进行靶区定位的数值方法——以新疆南阿拉套山为例[J].中国地质,2013,40(2):423-429.[GUO Jing,LUO Zhao-hua,LIU Xiao,et al.A Quantitative Method for Target Prediction Using the Wide Composition-spectrum Dike Swarms—A Case Study of the South Alatao Mountain in Xinjiang[J].Geology in China,2013,40(2):423-429.]
[14]MCCUAIG T C,BERESFORD S,HRONSKY J.Translating the Mineral Systems Approach into an Effective Exploration Targeting System[J].Ore Geology Reviews,2010,38(3):128-138.
[15]李德东,罗照华,周久龙,等.岩墙厚度对成矿作用的约束:以石湖金矿为例[J].地学前缘,2011,18(1):166-178.[LI De-dong,LUO Zhao-hua,ZHOU Jiu-long,et al.Constraints of Dike Thicknesses on the Metallogenesis and Its Application to the Shihu Gold Deposit[J].Earth Science Frontiers,2011,18(1):166-178.]
[16]LAZNICKA P.Giant Metallic Deposits:Future Sources of Industrial Metals[M].Heidelberg:Springer,2006.
[17]WILKINSON J J,STOFFELL B,WILKINSON C C,et al.Anomalously Metal-rich Fluids form Hydrothermal Ore Deposits[J].Science,2009,323:764-767.
[18]CANDELA P A.A Review of Shallow,Ore-related Granites:Textures,Volatiles, and Ore Metals[J].Journal of Petrology,1997,38(12):1619-1633.
[19]黄凡,罗照华,卢欣祥,等.东沟含钼斑岩由太山庙岩基派生?[J].矿床地质,2009,28(5):569-584.[HUANG Fan,LUO Zhao-hua,LU Xin-xiang,et al.Was Donggou Porphyry Mo Deposit Derived from Taishanmiao Batholith?[J].Mineral Deposits,2009,28(5):569-584.]
[20]LOWENSTERN J B.Dissolved Volatile Concentrations in an Ore-forming Magma[J].Geology,1994,22(10):893-896.
[21]JOHANNES W,HOLTZ F.Petrogenesis and Experimental Petrology of Granitic Rocks[M].Heidelberg:Springer,1996.
[22]HEINRICH C A.The Physical and Chemical Evolution of Low-salinity Magmatic Fluids at the Porphyry to Epithermal Transition:A Thermodynamic Study[J].Mineralium Deposita,2005,39(8):864-889.
[23]BAKER D R.Granitic Melt Viscosity and Dike Formation[J].Journal of Structural Geology,1998,20(9/10):1395-1404.
[24]AUDETAT A,KEPPLER H.Viscosity of Fluids in Subduction Zones[J].Science,2004,303:513-516.
[25]ZELLMER G F,ANNEN C.An Introduction to Magma Dynamics[J].Geological Society,London,Special Publication,2008,304:1-13.
[26]罗照华.小岩体成大矿学说的内涵和意义[J].西北地质,2012,45(4):204-215.[LUO Zhao-hua.The Theory of Metallogeny by the Small Magmatic Intrusion:Meaning and Implications[J].Northwestern Geology,2012,45(4):204-215.]
[27]PETFORD N,CRUDEN A R,MCCAFFREY K J W,et al.Granite Magma Formation,Transport and Emplacement in the Earth’s Crust[J].Nature,2000,408:669-673.
[28]於崇文.地质系统的复杂性[M].北京:地质出版社,2007.
YU Chong-wen.Complexity of Geological Systems[M].Beijing:Geological Publishing House,2007.
[29]CANDELA P A.Physics of Aqueous Phase Evolution in Plutonic Environments[J].American Mineralogist,1991,76(7/8):1081-1091.
[30]SIMMONS S F,BROWN K L.Gold in Magmatic Hydrothermal Solutions and the Rapid Formation of a Giant Ore Deposit[J].Science,2006,314:288-291.
[31]MEMETI V,PATERSON S,MATZEL J,et al.Magmatic Lobes as “Snapshots” of Magma Chamber
Growth and Evolution in Large,Composite Batholiths:An Example from the Tuolumne Intrusion,Sierra Nevada,California[J].GSA Bulletin,2010,122(11/12):1912-1931.
[32]KELLEY S P,WARTHO J A.Rapid Kimberlite Ascent and the Significance of Ar-Ar Ages in Xenolith
Phlogopites[J].Science,2000,289:609-611.
[33]LOUCKS R R,MAVROGENES J A.Gold Solubility in Supercritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions[J].Science,1999,284:2159-2163.
[34]CANON-TAPIA E,WALKER G P L.Global Aspects of Volcanism:The Perspectives of “Plate Tectonics” and “Volcanic Systems”[J].Earth-science Reviews,2004,66(1/2):163-182.
[35]BUREAU H,KEPPLER H.Complete Miscibility Between Silicate Melts and Hydrous Fluids in the Upper Mantle:Experimental Evidence and Geochemical Implications[J].Earth and Planetary Science Letters,1999,165(2):187-196.
[36]罗照华,黄忠敏,柯 珊.花岗质岩石的基本问题[J].地质论评,2007,53(增):180-226.[LUO Zhao-hua,HUANG Zhong-min,KE Shan.An Overview of Granitoid[J].Geological Review,2007,53(S):180-226.]
[37]LU Y J,KERRICH R,CAWOOD P A,et al.Zircon SHRIMP U-Pb Geochronology of Potassic Felsic Intrusions in Western Yunnan,SW China:Constraints on the Relationship of Magmatism to the Jinsha Suture[J].Gondwana Research,2012,22(2):737-747.

Memo

Memo:
-
Last Update: 2014-04-10