[1] SOPHOCLEOUS M.Interactions Between Ground-water and Surface Water:The State of the Science[J].Hydrogeology Journal,2002,10(1):52-67.
[2] VERVIER P,GIBERT J,MARMONIER P,et al.A Perspective on the Permeability of the Surface Freshwater-groundwater Ecotone[J].Journal of the North American Benthological Society,1992,11(1):93-102.
[3] WARD J V,BRETSCHKO G,BRUNKE M,et al.
The Boundaries of River Systems:The Metazoan Perspective[J].Freshwater Biology,1998,40(3):531-569.
[4] HARVEY J W,FULLER C C.Effect of Enhanced
Manganese Oxidation in the Hyporheic Zone on Basin-scale Geochemical Mass Balance[J].Water Resources Research,1998,34(4):623-636.
[5] 滕彦国,左 锐,王金生.地表水-地下水的交错带及其生态功能[J].地球与环境,2007,35(1):1-8.
TENG Yan-guo,ZUO Rui,WANG Jin-sheng.Hypor-heic Zone of Groundwater and Surfacewater and Its Ecological Function[J].Earth and Environment,2007,35(1):1-8.
[6] KRAUSE S,HANNAH D M,FLECKENSTEIN J H.Hyporheic Hydrology:Interactions at the Groundwater-surfacewater Interface[J].Hydrological Processes,2009,23(15):2103-2107.
[7] LARNED S T,DATRY T.River Flow Controls Ecological Processes and Invertebrate Assemblages in Subsurface Flowpaths of an Ephemeral River Reach[J].Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1532-1544.
[8] KRAUSE S,HANNAH D M,FLECKENSTEIN J H,et al.Inter-disciplinary Perspectives on Processes in the Hyporheic Zone[J].Ecohydrology,2011,4(4):481-499.
[9] JONES J B,FISHER S G,GRIMM N B.Vertical
Hydrologic Exchange and Ecosystem Metabolism in a Sonoran Desert Stream[J].Ecology,1995,76(3):942-952.
[10] STEVE B,CAI Z,CARDENAS B,et al.The Hypor-heic Handbook:A Handbook on the Groundwater-surfacewater Interface and Hyporheic Zone for Environmental Managers[R].Bristol:UK Environment Agency,2009.
[11] SEDELL J R,REEVES G H,HAUER F R,et al.Role of Refugia in Recovery from Disturbances:Modern Fragmented and Disconnected River Systems[J].Environmental Management,1990,14(5):711-724.
[12] MAAZOUZI C,GALASSI D,CLARET C,et al.Do
Benthic Invertebrates Use Hyporheic Refuges During Streambed Drying?A Manipulative Field Experiment in Nested Hyporheic Flowpaths[J].Ecohydrology,2017,10(6):1-26.
[13] GANDY C J,SMITH J W N,JARVIS A P.Attenuation of Mining-derived Pollutants in the Hyporheic Zone:A Review[J].Science of the Total Environment,2007,373(2/3):435-446.
[14] HAUER F R,LAMBERTI G A.Methods in Stream
Ecology[M].New York:Academic Press,1996.
[15] SMITH J W N.Groundwater-surface Water Interactions in the Hyporheic Zone[R].Bristol:UK Environment Agency,2005.
[16] TRISKA F J,KENNEDY V C,AVANZINO R J,et al.Retention and Transport of Nutrients in a Third-order Stream in Northwestern California:Hyporheic Processes[J].Ecology,1989,70(6):1893-1905.
[17] WHITE D S.Perspectives on Defining and Delineating Hyporheic Zones[J].Journal of the North Ameri-can Benthological Society,1993,12(1):61-69.
[18] VALETT H M,HAKENKAMP C C; BOULTON A J.Perspectives on the Hyporheic Zone:Integrating Hydrology and Biology Introduction [J].Journal of the North American Benthological Society,1993,12(1):40-43.
[19] BOULTON A J,FOSTER J G.Effects of Buried Leaf Litter and Vertical Hydrologic Exchange on Hypor-heic Water Chemistry and Fauna in a Gravel-bed River in Northern New South Wales,Australia[J].Freshwater Biology,1998,40(2):229-243.
[20] BOULTON A J,FINDLAY S,MARMONIER P,et al.The Functional Significance of the Hyporheic Zone in Streams and Rivers[J].Annual Review of Ecology and Systematics,1998,29:59-81.
[21] CARDENAS M B,WILSON J L.Hydrodynamics of Coupled Flow Above and Below a Sediment-water Interface with Triangular Bedforms[J].Advances in Water Resources,2007,30(3):301-313.
[22] HESTER E T,BROOKS K E,SCOTT D T.Comparing Reach Scale Hyporheic Exchange and Denitrification Induced by Instream Restoration Structures and Natural Streambed Morphology[J].Ecological Engineering,2018,115:105-121.
[23] ELLIOTT A H,BROOKS N H.Transfer of Nonsor-bing Solutes to a Streambed with Bed Forms:Theory[J].Water Resources Research,1997,33(1):123-136.
[24] XIAO Y,WANG N,LIANG D,et al.Flow Structures in Trapezoidal Compound Channels with Different Side Slopes of Main Channel[J].International Journal of Civil Engineering,2017,16(7):823-835.
[25] WANG N,ZHANG C,XIAO Y,et al.Transverse
Hyporheic Flow in the Cross-section of a Compound River System[J].Advances in Water Resources,2018,112:263-277.
[26] HILL A R,LABADIA C F,SANMUGADAS K.Hyporheic Zone Hydrology and Nitrogen Dynamics in Relation to the Streambed Topography of a N-rich Stream[J].Biogeochemistry,1998,42(3):285-310.
[27] 张国涛.潜流带水交换对河流微地形的响应机理研究[D].西安:西北大学,2017.
ZHANG Guo-tao.Redponse of Hyporheic Water Exchange to River Micro-opographies at the Meandering Bank[D].Xi’an:Northwest University,2017.
[28] NEWCOMER J T A,KAUSHAL S S,MAYER P M,et al.Nutrient Retention in Restored Streams and Rivers:A Global Review and Synthesis[J].Water,2016,8(4):1-28.
[29] TUTTLE A K,MCMILLAN S K,GARDNER A,et al.Channel Complexity and Nitrate Concentrations Drive Denitrification Rates in Urban Restored and Unrestored Streams[J].Ecological Engineering,2014,73:770-777.
[30] BARDINI L,BOANO F,CARDENAS M B,et al.Nutrient Cycling in Bedform Induced Hyporheic Zones[J].Geochimica et Cosmochimica Acta,2012,84:47-61.
[31] WEATHERILL J J,ATASHGAHI S,SCHNEIDEWIND U,et al.Natural Attenuation of Chlorinated Ethenes in Hyporheic Zones:A Review of Key Biogeochemical Processes and In-situ Transformation Potential[J].Water Research,2018,128:362-382.
[32] CARDENAS M B.A Model for Lateral Hyporheic Flow Based on Valley Slope and Channel Sinuosity[J].Water Resources Research,2009,45(1):206-216.
[33] CARLING P A.Deposition of Fine and Coarse Sand in an Open-work Gravel Bed[J].Canadian Journal of Fisheries and Aquatic Sciences,1984,41(2):263-270.
[34] GREIG S M,SEAR D A,CARLING P A.The Impact of Fine Sediment Accumulation on the Survival of Incubating Salmon Progeny:Implications for Sediment Management[J].Science of the Total Environment,2005,344(1/2/3):241-258.
[35] ZIMMERMANN A E,LAPOINTE M.Intergranular
Flow Velocity Through Salmonid Redds:Sensitivity to Fines Infiltration from Low Intensity Sediment Transport Events[J].River Research and Applications,2005,21(8):865-881.
[36] BOANO F,REVELLI R,RIDOLFI L.Bedform-induced Hyporheic Exchange with Unsteady Flows[J].Advances in Water Resources,2007,30(1):148-156.
[37] PACKMAN A I,SALEHIN M.Relative Roles of Stream Flow and Sedimentary Conditions in Controlling Hyporheic Exchange[J].Hydrobiologia,2003,494(1/2/3):291-297.
[38] RYAN R J,PACKMAN A I.Changes in Streambed Sediment Characteristics and Solute Transport in the Headwaters of Valley Creek,an Urbanizing Watershed[J].Journal of Hydrology,2006,323(1/2/3/4):74-91.
[39] RAHIMI M,ESSAID H I,WILSON J T.The Role of Dynamic Surface Water-groundwater Exchange on Streambed Denitrification in a First-order,Low-relief Agricultural Watershed[J].Water Resources Research,2015,51(12):9514-9538.
[40] WARD A S,SCHMADEL N M,WONDZELL S M,et al.Hydrogeomorphic Controls on Hyporheic and Riparian Transport in Two Headwater Mountain Streams During Base Flow Recession[J].Water Resources Research,2016,52:1479-1497.
[41] TRAUTH N,FLECKENSTEIN J H.Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone[J].Water Resources Research,2016,53:779-798.
[42] FISHER S G,GRIMM N B,MARTI E,et al.Material Spiraling in Stream Corridors:A Telescoping Ecosystem Model[J].Ecosystems,1998,1(1):19-34.
[43] GRISCHEK T,HISCOCK K M,METSCHIES T,et al.Factors Affecting Denitrification During Infiltration of River Water into a Sand and Gravel Aquifer in Saxony,Germany[J].Water Research,1998,32(2):450-460.
[44] BOULTON A J,FENWICK G D,HANCOCK P J,et al.Biodiversity,Functional Roles and Ecosystem Services of Groundwater Invertebrates[J].Invertebrate Systematics,2008,22(2):103-116.
[45] BURKHOLDER B K,GRANT G E,HAGGERTY R,et al.Influence of Hyporheic Flow and Geomorphology on Temperature of a Large,Gravel-bed River,Clackamas River,Oregon,USA[J].Hydrological Processes,2008,22(7):941-953.
[46] MCCLAIN M E,BOYER E W,DENT C L,et al.Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems[J].Ecosystems,2003,6(4):301-312.
[47] HANNAH D M,MALCOLM I A,BRADLEY C.Seasonal Hyporheic Temperature Dynamics over Riffle Bedforms[J].Hydrological Processes,2009,23(15):2178-2194.
[48] BRIGGS M A,DAY-LEWIS F D,ONG J B,et al.Dual-domain Mass-transfer Parameters from Electrical Hysteresis:Theory and Analytical Approach Applied to Laboratory,Synthetic Streambed,and Groundwater Experiments[J].Water Resources Research,2014,50(10):8281-8299.
[49] LAUTZ L K,FANELLI R M.Seasonal Biogeochemical Hotspots in the Streambed Around Restoration Structures[J].Biogeochemistry,2008,91(1):85-104.
[50] BOULTON A J,HANCOCK P J.Rivers as Groundwater-dependent Ecosystems:A Review of Degrees of Dependency,Riverine Processes and Management Implications[J].Australian Journal of Botany,2006,54(2):133-144.
[51] SINGER G,BESEMER K,HODL I,et al.Microcosm Design and Evaluation to Study Stream Microbial Biofilms[J].Limnology and Oceanography:Methods,2006,4(1):436-447.
[52] PERALTA-MARAVER I,REISS J,ROBERTSON A L.Interplay of Hydrology,Community Ecology and Pollutant Attenuation in the Hyporheic Zone[J].Science of the Total Environment,2018,610/611:267-275.
[53] GIBERT J,DANIELOPOL D L,STANFORD J A,et al.Groundwater Ecology[M].London:Academic Press,1994.
[54] BOULTON A J.Hyporheic Rehabilitation in Rivers:Restoring Vertical Connectivity[J].Freshwater Biology,2007,52(4):632-650.
[55] PACIOGLU O,PARVULESCU L.The Chalk Hyporheic Zone:A True Ecotone?[J].Hydrobiologia,2017,790(1):1-12.
[56] STONEDAHL S H,SAWYER A H,STONEDAHL F,et al.Effect of Heterogeneous Sediment Distributions on Hyporheic Flow in Physical and Numerical Models[J].Ground Water,2018,56(6):935-946.
[57] BATTIN T J,KAPLAN L A,DENIS NEWBOLD J,et al.Contributions of Microbial Biofilms to Ecosystem Processes in Stream Mesocosms[J].Nature,2003,426:439-442.
[58] BARANOV V,LEWANDOWSKI J,ROMEIJN P,et al.Effects of Bioirrigation of Non-biting Midges(Diptera:Chironomidae)on Lake Sediment Respiration[J].Scientific Reports,2016,6:1-10.
[59] MERMILLOD-BLONDIN F,MAUCLAIRE L,MONTU-ELLE B.Use of Slow Filtration Columns to Assess Oxygen Respiration,Consumption of Dissolved Organic Carbon,Nitrogen Transformations,and Microbial Parameters in Hyporheic Sediments[J].Water Research,2005,39(9):1687-1698.
[60] BOANO F,HARVEY J W,MARION A,et al.Hyporheic Flow and Transport Processes:Mechanisms,Models,and Biogeochemical Implications[J].Reviews of Geophysics,2014,52(4):603-679.
[61] FINDLAY S,STRAYER D,GOUMBALA C,et al.Metabolism of Streamwater Dissolved Organic Carbon in the Shallow Hyporheic Zone[J].Limnology and Oceanography,1993,38(7):1493-1499.
[62] RAYMOND P A,BAUER J E.Bacterial Consumption of DOC During Transport Through a Temperate Estuary[J].Aquatic Microbial Ecology,2000,22(1):1-12.
[63] QUALLS R G,HAINES B L.Geochemistry of Dissolved Organic Nutrients in Water Percolating Through a Forest Ecosystem[J].Soil Science Society of America Journal,1991,55(4):1112-1123.
[64] MORRIS D P,HARGREAVES B R.The Role of
Photochemical Degradation of Dissolved Organic Carbon in Regulating the UV Transparency of Three Lakes on the Pocono Plateau[J].Limnology and Oceanography,1997,42(2):239-249.
[65] MCKNIGHT D,THURMAN E M,WERSHAW R L,et al.Biogeochemistry of Aquatic Humic Substances in Thoreau’s Bog,Concord,Massachusetts[J].Ecology,1985,66(4):1339-1352.
[66] BOTT T L,BROCK J T,BAATTRUP-PEDERSEN A,et al.An Evaluation of Techniques for Measuring Peri-phyton Metabolism in Chambers[J].Canadian Journal of Fisheries and Aquatic Sciences,1997,54(3):715-725.
[67] PUSCH M,SCHWOERBEL J.Community Respiration in Hyporheic Sediments of a Mountain Stream(Steina,Black Forest)[J].Archiv fur Hydrobiologie,1994,130(1):35-52.
[68] UZARSKI D G,BURTON T M,STRICKER C A.A New Chamber Design for Measuring Community Metabolism in a Michigan Stream[J].Hydrobiologia,2001,455(1/2/3):137-155.
[69] DILLON P J,MOLOT L A.Effect of Landscape Form on Export of Dissolved Organic Carbon,Iron,and Phosphorus from Forested Stream Catchments[J].Water Resources Research,1997,33(11):2591-2600.
[70] CRAFT J A,STANFORD J A,PUSCH M.Microbial Respiration Within a Floodplain Aquifer of a Large Gravel-bed River[J].Freshwater Biology,2002,47(2):251-261.
[71] HLAVACˇGOV E,RULíK M,ACˇGP L.Anaerobic Microbial Metabolism in Hyporheic Sediment of a Gravel Bar in a Small Lowland Stream[J].River Research and Applications,2005,21(9):1003-1011.
[72] RANALLI A J,MACALADY D L.The Importance of the Riparian Zone and In-stream Processes in Nitrate Attenuation in Undisturbed and Agricultural Watersheds:A Review of the Scientific Literature[J].Journal of Hydrology,2010,389(3/4):406-415.
[73] 闫玉琴.泾河潜流带氮迁移转化规律及其关键过程影响因素[D].杨凌:西北农林科技大学,2018.
YAN Yu-qin.Nitrogen Migration and Transformation in Hyporheic Zone of Jinghe and Factors on Its Key Process[D].Yangling:Northwest A&F University,2018.
[74] 苏 东,苏小四,张丽华,等.沈阳黄家傍河水源地河水入渗过程中氧化-还原分带规律[J].中国环境科学,2016,36(7):2043-2050.
SU Dong,SU Xiao-si,ZHANG Li-hua,et al.Redox Zonation in the Process of River Water Infiltration in the Huangjia Riverside Well Field,Shenyang City[J].China Environmental Science,2016,36(7):2043-2050.
[75] MEGHDADI A,JAVAR N.Evaluation of Nitrate Sources and the Percent Contribution of Bacterial Denitrification in Hyporheic Zone Using Isotope Fractionation Technique and Multi-linear Regression Analysis[J].Journal of Environmental Management,2018,222:54-65.
[76] HOLMES R M,JONES J B,FISHER S G,et al.
Denitrification in a Nitrogen-limited Stream Ecosystem[J].Biogeochemistry,1996,33(2):125-146.
[77] PFENNING K S,MCMAHON P B.Effect of Nitrate,Organic Carbon,and Temperature on Potential Denitrification Rates in Nitrate-rich Riverbed Sediments[J].Journal of Hydrology,1996,187(3/4):283-295.
[78] JONES J B,FISHER S G,GRIMM N B.Nitrification in the Hyporheic Zone of a Desert Stream Ecosystem[J].Journal of the North American Benthological Society,1995,14(2):249-258.
[79] LARNED S T,NIKORA V I,BIGGS B J F.Mass-transfer-limited Nitrogen and Phosphorus Uptake by Stream Periphyton:A Conceptual Model and Experimental Evidence[J].Limnology and Oceanography,2004,49(6):1992-2000.
[80] 朱雅宁.氨氮在弱透水层中的渗透迁移规律研究[D].长春:吉林大学,2011.
ZHU Ya-ning.Study on Permeation and Migration Low of Ammonia Nitrogen in the Aquitard[D].Changchun:Jilin University,2011.
[81] MEGHDADI A.Characterizing the Capacity of Hyporheic Sediments to Attenuate Groundwater Nitrate Loads by Adsorption[J].Water Research,2018,140:364-376.
[82] BUTTURINI A,SABATER F.Importance of Transient Storage Zones for Ammonium and Phosphate Retention in a Sandy-bottom Mediterranean Stream[J].Freshwater Biology,1999,41(3):593-603.
[83] HENDRICKS S P,WHITE D S.Streams and Ground-water Influences on Phosphorus Biogeochemistry[M].London:Academic Press,2000.
[84] MULHOLLAND P J,MARZOLF E R,WEBSTER J R,et al.Evidence of Hyporheic Retention of Phosphorus in Walker Branch[J].Limnology and Oceanography,1997,42(2):443-451.
[85] DODD J,LARGE D J,FORTEY N J,et al.Geoche-mistry and Petrography of Phosphorus in Urban Canal Bed Sediment[J].Applied Geochemistry,2003,18(2):259-267.
[86] WIELINGA B,LUCY J K,MOORE J N,et al.Microbiological and Geochemical Characterization of Fluvially Deposited Sulfidic Mine Tailings[J].Applied and Environmental Microbiology,1999,65(4):1548-1555.
[87] WINDE F,WALT I J V D.The Significance of Groundwater-stream Interactions and Fluctuating Stream Chemistry on Waterborne Uranium Contamination of Streams:A Case Study from a Gold Mining Site in South Africa[J].Journal of Hydrology,2004,287(1/2/3/4):178-196.
[88] MADIGAN M T,BENDER K S,BUCKLEY D H,et al.Brock:Biology of Microorganisms[M].London:Pearson,2017.
[89] FULLER C C,HARVEY J W.Reactive Uptake of
Trace Metals in the Hyporheic Zone of a Mining-contaminated Stream,Pinal Creek,Arizona[J].Environmental Science and Technology,2000,34(7):1150-1155.
[90] NAGORSKI S A,MOORE J N.Arsenic Mobilization in the Hyporheic Zone of a Contaminated Stream[J].Water Resources Research,1999,35(11):3441-3450.
[91] SENGUPTA S,SRACEK O,JEAN J S,et al.Difference in Attenuation Among Mn,As,and Fe in Riverbed Sediments[J].Journal of Hazardous Materials,2018,341:277-289.
[92] HARVEY C F,SWARTZ C H,BADRUZZAMAN A B,et al.Arsenic Mobility and Groundwater Extraction in Bangladesh[J].Science,2002,298:1602-1606.
[93] ZHANG Z,GUO H,ZHAO W,et al.Influences of Groundwater Extraction on Flow Dynamics and Arsenic Levels in the Western Hetao Basin,Inner Mongolia,China[J].Hydrogeology Journal,2018,26(5):1499-1512.
[94] 唐翔宇,吕伯升,吴文华.水生生态系统中的微生物-金属相互作用[J].环境科学研究,1999,12(3):28-30.
TANG Xiang-yu,LU Bo-sheng,WU Wen-hua.Metal-microbe Interactions in Aquatic Ecosystem[J].Research of Environmental Sciences,1999,12(3):28-30.
[95] HINKLE S R,BENCALA K E,WENTZ D A,et al.Mercury and Methylmercury Dynamics in the Hypor-heic Zone of an Oregon Stream[J].Water Air and Soil Pollution,2014,225(1):1694.
[96] RAVICHANDRAN M.Interactions Between Mercury and Dissolved Organic Matter:A Review[J].Chemosphere,2004,55(3):319-331.
[97] BENCALA K E.Simulation of Solute Transport in a Mountain Pool-and-riffle Stream with a Kinetic Mass Transfer Model for Sorption[J].Water Resources Research,1983,19(3):732-738.
[98] GOOSEFF M N,WONDZELL S M,HAGGERTY R,et al.Comparing Transient Storage Modeling and Residence Time Distribution(RTD)Analysis in Geomorphically Varied Reaches in the Lookout Creek Basin,Oregon,USA[J].Advances in Water Resources,2003,26(9):925-937.
[99] SALEHIN M,PACKMAN A I,ANDERS W.Comparison of Transient Storage in Vegetated and Unvegetated Reaches of a Small Agricultural Stream in Sweden:Seasonal Variation and Anthropogenic Manipulation[J].Advances in Water Resources,2003,26(9):951-964.
[100] HOAGLAND B,RUSSO T A,GU X,et al.Hyporheic Zone Influences on Concentration-discharge Relationships in a Headwater Sandstone Stream[J].Water Resources Research,2017,53(6):4643-4667.
[101] REN J,PACKMAN A I.Modeling of Simultaneous Exchange of Colloids Andsorbing Contaminants Between Streams and Streambeds[J].Environmental Science and Technology,2004,38(10):2901-2911.
[102] REN J,PACKMAN A I.Stream-subsurface Exchange of Zinc in the Presence of Silica and Kaolinite Colloids[J].Environmental Science and Technology,2004,38(24):6571-6581.
[103] AZIZIAN M,BOANO F,COOK P L M,et al.Ambient Groundwater Flow Diminishes Nitrate Processing in the Hyporheic Zone of Streams[J].Water Resources Research,2017,53(5):3941-3967.
[104] KEY-YOUNG C,GILL G A,LEHMAN R D,et al.Sediment-water Exchange of Total Mercury and Monomethyl Mercury in the San Francisco Bay-delta[J].Limnology and Oceanography,2004,49(5):1512-1527.
[105] YOUNGER P L,BANWART S A,HEDIN R S.Mine Water:Hydrology,Pollution,Remediation[M].London:Kluwer Academic Publishers,2002.
[106] BOTT T L,BROCK J T,CUSHING C E,et al.A Comparison of Methods for Measuring Primary Productivity and Community Respiration in Streams[J].Hydrobiologia,1978,60(1):3-12.
[107] FORSTER S,GLUD R N,GUNDERSEN J K,et al.In-situ Study of Bromide Tracer and Oxygen Flux in Coastal Sediments[J].Estuarine Coastal and Shelf Science,1999,49(6):813-827.
[108] UZARSKI D G,STRICKER C A,BURTON T M,et al.The Importance of Hyporheic Sediment Respiration in Several Mid-order Michigan Rivers:Comparison Between Methods in Estimates of Lotic Metabolism[J].Hydrobiologia,2004,518:47-57.
[109] MERMILLOD-BLONDIN F,MAUCLAIRE L,MONTUELLE B.Use of Slow Filtration Columns to Assess Oxygen Respiration,Consumption of Dissolved Organic Carbon Nitrogen Transformations,and Microbial Parameters in Hyporheic Sediments[J].Water Research,2005,39(9):1687-1698.
[110] DODDS W K,BROCK J.A Portable Flow Chamber for In-situ Determination of Benthic Metabolism[J].Freshwater Biology,1998,39(1):49-59.
[111] MARKI M,MULLER B,DINKEL C,et al.Nitrogen Turnover in Lake Sediments:Seen with Ion-selective Electrodes[J].Geochimica et Cosmochimica Acta,2002,66(15):485.
[112] LOCATELLI C,TORSI G.Voltammetric Trace Metal Determinations by Cathodic and Anodic Stripping Voltammetry in Environmental Matrices in the Presence of Mutual Interference[J].Journal of Electroanalytical Chemistry,2001,509(1):80-89.
[113] RODRIGUEZ-MOZAZ S,ALDA M,MARCO M,et al.Biosensors for Environmental Monitoring:A Global Perspective[J].Talanta,2005,65(2):291-297.
[114] BETTERIDGE K F E,WILLIAMS J J,THORNE P D,et al.Acoustic Instrumentation for Measuring Near-bed Sediment Processes and Hydrodynamics[J].Journal of Experimental Marine Biology and Ecology,2003,285/286:105-118.
[115] ACWORTH R I,DASEY G R.Mapping of the Hyporheic Zone Around a Tidal Creek Using a Combination of Borehole Logging,Borehole Electrical Tomography and Cross-creek Electrical Imaging,New South Wales,Australia[J].Hydrogeology Journal,2003,11(3):368-377.
[116] MOSER D P,FREDRICKSON J K,GEIST D R,et al.Biogeochemical Processes and Microbial Characteristics Across Groundwater-surface Water Boundaries of the Hanford Reach of the Columbia River[J].Environmental Science and Technology,2003,37(22):5127-5134.
[117] MALCOLM I A,SOULSBY C,YOUNGSON A F,et al.Heterogeneity in Ground Water-surface Water Interactions in the Hyporheic Zone of a Salmonid Spa-wning Stream[J].Hydrological Processes,2003,17(3):601-617.
[118] CONANT B J R,CHERRY J A,GILLHAM R W.A PCE Groundwater Plume Discharging to a River:Influence of the Streambed and Near-river Zone on Contaminant Distributions[J].Journal of Contaminant Hydrology,2004,73(1/2/3/4):249-279.
[119] BENNER S G,SMART E W,MOORE J N.Metal Behavior During Surface-groundwater Interaction,Silver Bow Creek,Montana[J].Environmental Science and Technology,1995,29(7):1789-1795.