|Table of Contents|

Genesis of Linghu Gold Deposit in Xiaoqinling Ore District, the Southern Margin of North China Craton, China: Evidence from Fluid Inclusions, H-O and S-Pb Isotopic Compositions(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2020年第05期
Page:
569-583
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Genesis of Linghu Gold Deposit in Xiaoqinling Ore District, the Southern Margin of North China Craton, China: Evidence from Fluid Inclusions, H-O and S-Pb Isotopic Compositions
Author(s):
LI Tie-gang1 WU Guang1 CHEN Gong-zheng1 WU Hao2 WANG Guo-rui3 YANG Fei1 LI Ying-lei1
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. No.4 Gold Geological Party of Chinese People’s Armed Police Force, Liaoyang 111000, Liaoning, China; 3. Wanbao Mining Ltd., Beijing 100053, China
Keywords:
fluid inclusion H-O isotope S-Pb isotope ore-forming fluid gold deposit Xiaoqinling ore district the southern margin of North China Craton
PACS:
P618.51
DOI:
10.19814/j.jese.2020.06031
Abstract:
Linghu gold deposit is located at Xiaoqinling area in the southern margin of North China Craton. Ore bodies occur as veins in the fault zones. The ore-forming process can be divided into three stages, including quartz-pyrite stage, quartz-polymetallic sulfide stage and quartz-carbonate-pyrite stage. Quartz-polymetallic sulfide stage is the main mineralization stage, and gold mainly precipitates in this stage. Three types of fluid inclusions are distinguished in various quartz veins, including liquid-rich, gas-rich and H2O-CO2 inclusions. The fluid inclusions in the quartz of quartz-pyrite stage are liquid-rich; the homogenization temperatures, salinities, and densities are 424 ℃-499 ℃, 11.5%-13.6% NaCleq, and 0.55-0.66 g·cm-3, respectively. The fluid inclusions in the quartz of quartz-polymetallic sulfide stage consist of liquid-rich, gas-rich and H2O-CO2; the homogenization temperatures, salinities, and densities are 291 ℃-389 ℃, 0.4%-11.8% NaCleq, and 0.50-0.83 g·cm-3, respectively. There are liquid-rich and gas-rich inclusions in the quartz of quartz-carbonate-pyrite stage; the homogenization temperatures, salinities, and densities are 206 ℃-289 ℃, 8.3%-22.2% NaCleq, and 0.83-0.99 g·cm-3, respectively. The ore-forming fluids of Linghu gold deposit are generally characterized by high temperature, moderate-low salinity, and low density. The δ18OH2O values calculated for ore-bearing quartz range from 0.7‰ to 4.5‰, and the δD values from bulk extraction of fluid inclusion water range from -106.4‰ to -86.1‰, suggesting that the ore-forming fluid consists dominantly of magmatic water. The δ34S values range from -8.5‰ to 2.4‰, and the 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios of ore sulfides are in the ranges of 17.202-17.796, 15.448-15.473, and 37.712-38.255, respectively. The analysis results of S-Pb isotope indicate that the ore-forming materials mainly come from the granitic magma formed from partial melting of the lower lower-crust. Linghu gold deposit is a magmatic-hyrothermal gold deposit; fluid phase separation and temperature decrease are the dominant mechanisms for the deposition of ore-forming materials.

References:

[1] LIU R,LI J W,BI S J,et al.Magma Mixing Revealed from In-situ Zircon U-Pb-Hf Isotope Analysis of the Muhuguan Granitoid Pluton,Eastern Qinling Orogen,China:Implications for Late Mesozoic Tectonic Evolution[J].International Journal of Earth Sciences,2013,102(6):1583-1602.
[2] 陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992.
CHEN Yan-jing,FU Shi-gu.Gold Mineralization in West Henan[M].Beijing:Seismological Press,1992.
[3] 徐九华,何知礼,申世亮,等.小秦岭文峪—东闯金矿床稳定同位素地球化学及矿液矿质来源[J].地质找矿论丛,1993,8(2):87-100.
XU Jiu-hua,HE Zhi-li,SHEN Shi-liang,et al.Stable Isotope Geology of the Dongchuang and the Wenyu Gold Deposits and the Source of Ore-forming Fluid and Materials[J].Contributions to Geology and Mineral Resources Research,1993,8(2):87-100.
[4] MAO J W,GOLDFARB R J,ZHANG Z W,et al.Gold Deposits in the Xiaoqinling-Xiong’ershan Region,Qinling Mountains,Central China[J].Mineralium Deposita,2002,37(3/4):306-325.
[5] 王义天,毛景文,卢欣祥,等.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义[J].科学通报,2002,47(18):1427-1431.
WANG Yi-tian,MAO Jing-wen,LU Xin-xiang,et al.40Ar-39Ar Dating and Geological Implication of Auriferous Altered Rocks from the Middle-deep Section of Q875 Gold-quartz Vein in Xiaoqinling Area,Henan,China[J].Chinese Science Bulletin,2002,47(18):1427-1431.
[6] 李厚民,叶会寿,毛景文,等.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义[J].矿床地质,2007,26(4):417-424.
LI Hou-min,YE Hui-shou,MAO Jing-wen,et al.Re-Os Dating of Molybdenites from Au(-Mo)Deposits in Xiaoqinling Gold Ore District and Its Geological Significance[J].Mineral Deposits,2007,26(4):417-424.
[7] 毛景文,叶会寿,王瑞廷,等.东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价[J].地质通报,2009,28(1):72-79.
MAO Jing-wen,YE Hui-shou,WANG Rui-ting,et al.Mineral Deposit Model of Mesozoic Porphyry Mo and Vein-type Pb-Zn-Ag Ore Deposits in the Eastern Qinling,Central China and Its Implication for Prospecting[J].Geological Bulletin of China,2009,28(1):72-79.
[8] LI J W,LI Z K,ZHOU M F,et al.The Early Cretaceous Yangzhaiyu Lode Gold Deposit,North China Craton:A Link Between Craton Reactivation and Gold Veining[J].Economic Geology,2012,107(1):43-79.
[9] ZHAO T P,MENG L,GAO X Y,et al.Late Mesozoic Felsic Magmatism and Mo-Au-Pb-Zn Mineralization in the Southern Margin of the North China Craton:A Review[J].Journal of Asian Earth Sciences,2018,161:103-121.
[10] WANG D Z,LIU J J,ZHAI D G,et al.Mineral Paragenesis and Ore-forming Processes of the Dongping Gold Deposit,Hebei Province,China[J].Resource Geology,2019,69(3):287-313.
[11] 赵新福,李占轲,赵少瑞,等.华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统[J].地球科学,2019,44(1):52-68.
ZHAO Xin-fu,LI Zhan-ke,ZHAO Shao-rui,et al.Early Cretaceous Regional-scale Magmatic-hydrothermal Metallogenic System at the Southern Margin of the North China Carton[J].Earth Science,2019,44(1):52-68.
[12] 刘俊辰.小秦岭金矿集区成矿物质来源与富集机制:以樊岔金矿床为例[D].北京:中国地质大学,2020.
LIU Jun-chen.Origins of the Ore-forming Materials and Enrichment Mechanism in the Xiaoqinling Goldfield,Southern Margin of the North China Craton:A Case Study of the Fancha Gold Deposit[D].Beijing:China University of Geosciences,2020.
[13] 祁进平,赖 勇,任康绪,等.小秦岭金矿田成因的锶同位素约束[J].岩石学报,2006,22(10):2543-2550.
QI Jin-ping,LAI Yong,REN Kang-xu,et al.Sr-isotope Constraint on the Origin of the Xiaoqinling Gold Field[J].Acta Petrologica Sinica,2006,22(10):2543-2550.
[14] 蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭两类不同构造环境中的造山型金矿省[J].岩石学报,2009,25(11):2727-2738.
JIANG Shao-yong,DAI Bao-zhang,JIANG Yao-hui,et al.Jiaodong and Xiaoqinling:Two Orogenic Gold Provinces Formed in Different Tectonic Settings[J].Acta Petrologica Sinica,2009,25(11):2727-2738.
[15] 范宏瑞,谢奕汉,翟明国,等.豫陕小秦岭脉状金矿床三期流体运移成矿作用[J].岩石学报,2003,19(2):260-266.
FAN Hong-rui,XIE Yi-han,ZHAI Ming-guo,et al.A Three Stage Fluid Flow Model for Xiaoqinling Lode Gold Metallogenesis in the Henan and Shaanxi Pro-vince,Central China[J].Acta Petrologica Sinica,2003,19(2):260-266.
[16] 卢欣祥,尉向东,于在平,等.小秦岭—熊耳山地区金矿的成矿流体特征[J].矿床地质,2003,22(4):377-385.
LU Xin-xiang,WEI Xiang-dong,YU Zai-ping,et al.Characteristics of Ore-forming Fluids in Gold Deposit of Xiaoqinling-Xiong’ershan Area[J].Mineral Depo-sits,2003,22(4):377-385.
[17] JIAN W,LEHMANN B,MAO J W,et al.Mineralogy,Fluid Characteristics,and Re-Os Age of the Late Triassic Dahu Au-Mo Deposit,Xiaoqinling Region,Central China:Evidence for a Magmatic-hydrothermal Origin[J].Economic Geology,2015,110(1):119-145.
[18] 聂凤军,江思宏,赵明月.小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究[J].矿床地质,2001,20(2):163-173.
NIE Feng-jun,JIANG Si-hong,ZHAO Ming-yue.Lead and Sulfur Isotopic Studies of the Wenyu and the Dongchuang Quartz Vein Type Gold Deposits in Xiaoqinling Area,Henan and Shaanxi Provinces,Central China[J].Mineral Deposits,2001,20(2):163-173.
[19] 王团华,毛景文,王彦斌.小秦岭—熊耳山地区岩墙锆石SHRIMP年代学研究:秦岭造山带岩石圈拆沉的证据[J].岩石学报,2008,24(6):167-180.
WANG Tuan-hua,MAO Jing-wen,WANG Yan-bin.Research on SHRIMP U-Pb Chronology in Xiaoqinling-Xiong’ershan Area:The Evidence of Delamination of Lithosphere in Qinling Orogenic Belt[J].Acta Pe-trologica Sinica,2008,24(6):167-180.
[20] 陈 晶.东秦岭中生代造山型金成矿作用[D].北京:中国地质大学,2018.
CHEN Jing.Mesozoic Orogenic Gold Mineralization in the Eastern Qinling Orogen[D].Beijing:China University of Geosciences,2018.
[21] GOLDFARB R J,QIU K F,DENG J,et al.Orogenic Gold Deposits of China[C]∥SEG.The SEG-CUGB 2017 Conference.Beijing:SEG,2020:263-324.
[22] LI S R,SANTOSH M.Geodynamics of Heterogeneous Gold Mineralization in the North China Craton and Its Relationship to Lithospheric Destruction[J].Gondwana Research,2017,50:267-292.
[23] LIU J C,WANG Y T,HUANG S K,et al.The Gold Occurrence in Pyrite and Te-Bi Mineralogy of the Fancha Gold Deposit,Xiaoqinling Gold Field,Southern Margin of the North China Craton:Implication for Ore Genesis[J].Geological Journal,2019,55(8):5791-5811.
[24] HU J,JIANG S Y,ZHAO H X.Geochemistry and Petrogenesis of the Huashan Granites and Their Implications for the Mesozoic Tectonic Settings in the Xiaoqinling Gold Mineralization Belt,NW China[J].Journal of Asian Earth Science,2012,56:276-289.
[25] 李强之,陈衍景,钟增球,等.小秦岭东闯金矿成矿作用的40Ar-39Ar年代学研究[J].地质论评,2002,48(增):122-126.
LI Qiang-zhi,CHEN Yan-jing,ZHONG Zeng-qiu,et al.40Ar-30Ar Ages of the Ore-forming Processes of the Dongchuang Gold Deposit in the Xiaoqinling District,China[J].Geological Review,2002,48(S):122-126.
[26] 祁进平,陈衍景,李强之.小秦岭造山型金矿的流体成矿作用分析[J].矿床地质,2002,21(增):1009-1012.
QI Jin-ping,CHEN Yan-jing,LI Qiang-zhi.Synthesis of Hydrothermal Metallogenesis in Xiaoqinling Orogenic Gold Field[J].Mineral Deposits,2002,21(S):1009-1012.
[27] 周振菊,蒋少涌,秦 艳,等.小秦岭文峪金矿床流体包裹体研究及矿床成因[J].岩石学报,2011,27(12):3787-3799.
ZHOU Zhen-ju,JIANG Shao-yong,QIN Yan,et al.Fluid Inclusion Characteristics and Ore Genesis of the Wenyu Gold Deposit,Xiaoqinling Gold Belt[J].Acta Petrologica Sinica,2011,27(12):3787-3799.
[28] CHEN Y J,ZHAO Y C.Geochemical Characteristics and Evolution of REE in the Early Precambrian Sediments:Evidences from the Southern Margin of the North China Craton[J].Episodes,1997,20(2):109-116.
[29] 胡受奚,林潜龙,陈泽铭,等.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社,1998.
HU Shou-xi,LIN Qian-long,CHEN Ze-ming,et al.Geology and Metallogeny of the Collision Belt Between the South China and North China Plates[M].Nanjing:Nanjing University Press,1998.
[30] ZHAO H X,JIANG S H,FRIMMEL H E,et al.Geochemistry,Geochronology and Sr-Nd-Hf Isotopes of Two Mesozoic Granitoids in the Xiaoqinling Gold District:Implication for Large-scale Lithospheric Thinning in the North China Craton[J].Chemical Geology,2012,294/295:173-189.
[31] 高昕宇,赵太平,高剑峰,等.华北陆块南缘小秦岭地区早白垩世埃达克质花岗岩的LA-ICP-MS锆石U-Pb年龄、Hf同位素和元素地球化学特征[J].地球化学,2012,41(4):303-325.
GAO Xin-yu,ZHAO Tai-ping,GAO Jian-feng,et al.LA-ICP-MS Zircon U-Pb Ages,Hf Isotopic Composition and Geochemistry of Adakitic Granites in the Xiaoqinling Region,the South Margin of the North China Block[J].Geochimica,2012,41(4):303-325.
[32] 温子豪,李胜荣,袁茂文,等.小秦岭华山和文峪岩体成金潜力异同分析:来自锆石群形态标型的证据[J].地球科学与环境学报,2018,40(5):535-545.
WEN Zi-hao,LI Sheng-rong,YUAN Mao-wen,et al.Analysis of Similarities and Differences of Gold Potential Between Huashan and Wenyu Plutons in Xiaoqinling,China:Evidence from Morphological Characteristics of Zircons[J].Journal of Earch Sciences and Environment,2018,40(5):535-545.
[33] 栾世伟,陈尚迪.小秦岭金矿主要控矿因素及成矿模式[J].地质找矿论丛,1990,5(4):1-4.
LUAN Shi-wei,CHEN Shang-di.Main Ore-controlling Factors and Metallogenic Model of Gold Deposits in Xiaoqinling Area[J].Contributions to Geology and Mineral Resources Research,1990,5(4):1-14.
[34] 张进江,郑亚东,刘树文.小秦岭变质核杂岩的构造特征、形成机制及构造演化[M].北京:海洋出版社,1998.
ZHANG Jin-jiang,ZHENG Ya-dong,LIU Shu-wen.The Xiaoqinling Metamorphic Core Complex:Structure Characteristics,Genetic Mechanism and Tectonic Evolution[M].Beijing:China Ocean Press,1998.
[35] 张进江,郑亚东,刘树文.小秦岭金矿田中生代构造演化与矿床形成[J].地质科学,2003,38(1):74-84.
ZHANG Jin-jiang,ZHENG Ya-dong,LIU Shu-wen.Mesozoic Tectonic Evolution and Ore-deposits Formation in the Gold Mine Field of Xiaoqinling[J].Chinese Journal of Geology,2003,38(1):74-84.
[36] 王兴国,高锋辉,尤阳阳.豫西灵湖金矿床地质特征及资源前景分析[J].黄金,2015,36(5):17-21.
WANG Xing-guo,GAO Feng-hui,YOU Yang-yang.Analysis on Geological Characteristics and Resources Prospects in Linghu Gold Deposit,Western Henan[J].Gold,2015,36(5):17-21.
[37] 张为民,孙卫志,于 伟,等.河南省灵宝市灵湖金矿接替资源勘查(普查)报告[R].洛阳:河南省地质矿产勘查开发局第一地质矿产调查院,2011.
ZHANG Wei-min,SUN Wei-zhi,YU Wei,et al.Survey Report of Replacement Resources of Linghu Gold Deposit in Lingbao City,Henan Province[R].Luo-yang:No.1 Institute of Geological and Mineral Resources Survey of Henan,2011.
[38] BODNAR R J.Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions[J].Geochimica et Cosmochimica Acta,1993,57(3):683-684.
[39] 刘 斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
LIU Bin,DUAN Guang-xian.NaCl-H2O Density and Isochoric Foumulae for NaCl-H2O Inclusions and Their Applications[J].Acta Mineralogica Sinica,1987,7(4):345-352.
[40] COLLINS P L F.Gas Hydrates in CO2-bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity[J].Economic Geology,1979,74(6):1435-1444.
[41] SHEPHERD T J,RANKIN A H,ALDERTON D H M.A Practical Guide to Fluid Inclusion Studies[M].New York:Chapman and Hall,1985.
[42] CLAYTON R N,MAYEDA T K.The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis[J].Geochemica et Cosmochimica Acta,1963,27(1):43-52.
[43] SHEPPARD S M F.The Cornubian Batholith,SW England:D/H and 18O/16O Studies of Kaolinite and Other Alteration Minerals[J].Journal of the Geolo-gical Society,1977,133(6):573-591.
[44] DOE B R,ZARTMAN R E.Plumbotectonics of the Phanerozoic[M]∥BARNES H L.Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley and Sons,1979:574-588.
[45] GOLDFARB R J,GROVES D I.Orogenic Gold:Common or Evolving Fluid and Metal Sources Through Time[J].Lithos,2015,223:2-26.
[46] MCCUAIG T C,KEIRRICH R.P-T-t-deformation-fluid Characteristics of Lode Gold Deposits:Evidence from Alteration Systematics[J].Ore Geology Reviews,1998,12(6):381-453.
[47] 李 伟,谢桂青,张志远,等.流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约[J].岩石学报,2016,32(11):3489-3506.
LI Wei,XIE Gui-qing,ZHANG Zhi-yuan,et al.Constraint on the Genesis of Gutaishan Gold Deposit in Central Hunan Province:Evidence from Fluid Inclusion and C-H-O Isotopes[J].Acta Petrologica Sinica,2016,32(11):3489-3506.
[48] LIU J,ZHANG L J,WANG S L,et al.Formation of the Wulong Gold Deposit,Liaodong Gold Province,NE China:Constraints from Zircon U-Pb Age,Sericite Ar-Ar Age,and H-O-S-He Isotopes[J].Ore Geology Reviews,2019,109:130-143.
[49] 黎世美,瞿伦全,苏振邦,等.小秦岭金矿地质和成矿预测[M].北京:地质出版社,1996.
LI Shi-mei,QU Lun-quan,SU Zhen-bang,et al.The Geology of Xiaoqinling Gold Deposits and Metallogenetic Prospecting[M].Beijing:Geological Publishing House,1996.
[50] JIANG N,XU J H,SONG M X.Fluid Inclusion Cha-racteristics of Mesothermal Gold Deposits in the Xiaoqinling District,Shaanxi and Henan Provinces,People’s Republic of China[J].Mineralium Deposita,1999,34:150-162.
[51] 范宏瑞,谢奕汉,赵 瑞,等.小秦岭含金石英脉复式成因的流体包裹体证据[J].科学通报,2000,45(5):537-542.
FAN Hong-rui,XIE Yi-han,ZHAO Rui,et al.Dual Origins of Xiaoqinling Gold-bearing Quartz Veins:Fluid Inclusion Evidence[J].Chinese Science Bulletin,2000,45(5):537-542.
[52] RYE R O.The Evolution of Magmatic Fluids in the Epithermal Environment:The Stable Isotope Perspective[J].Economic Geology,1993,88(3):733-752.
[53] 李铁刚,孟宪锋,王国瑞,等.河南崤山金矿床流体包裹体及同位素特征[J].矿床地质,2018,37(2):403-419.
LI Tie-gang,MENG Xian-feng,WANG Guo-rui,et al.Fluid Inclusions and Isotopic Characteristics of Xiaoshan Gold Deposit in Henan Province[J].Mineral Deposits,2018,37(2):403-419.
[54] 卢焕章,范宏瑞,倪 培,等.流体包裹体[M].北京:科学出版社,2004.
LU Huan-zhang,FAN Hong-rui,NI Pei,et al.Fluid Inclusions[M].Beijing:Science Press,2004.
[55] OHMOTO H.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J].Economic Geology,1972,67(5):551-578.
[56] WU G,CHEN Y C,LI Z Y,et al.Geochronology and Fluid Inclusion Study of the Yinjiagou Porphyry-skarn Mo-Cu-pyrite Deposit in the East Qinling Orogenic Belt,China[J].Journal of Asian Earth Sciences,2014,79:585-607.
[57] ZARTMAN R E,DOE B R.Plumbotectonics:The Model[J].Tectonophysics,1981,75(1/2):135-162.
[58] 张理刚.东亚岩石圈块体地质:上地幔、基底和花岗岩同位素地球化学及其动力学[M].北京:科学出版社,1995.
ZHANG Li-gang.Block-geology of Eastern Asia Lithosphere:Isotope Geochemistry and Dynamics of Upper Mantle,Basement and Granite[M].Beijing:Science Press,1995.
[59] 李 英,任崔锁.华北地台南缘铅同位素演化[J].西安地质学院学报,1990,12(2):1-12.
LI Ying,REN Cui-suo.The Evolution of Lead Isotope in the Southern Margin of the Huabei Platform[J].Journal of Xi’an College of Geology,1990,12(2):1-12.
[60] 邵克忠,王恩德.祁雨沟地区爆破角砾岩型金矿成矿条件和找矿方向研究[J].河北地质学院学报,1992,15(2):105-195.
SHAO Ke-zhong,WANG En-de.Characteristics of Qiyugou Gold Deposits and Their Prospecting Perspective[J].Journal of Hebei College of Geology,1992,15(2):105-195.
[61] 范宏瑞,谢奕汉,赵 瑞,等.豫西熊耳山地区岩石和金矿床稳定同位素地球化学研究[J].地质找矿论丛,1994,9(1):54-64.
FAN Hong-rui,XIE Yi-han,ZHAO Rui,et al.Stable Isotope Geochemistry of Rocks and Gold Deposits in the Xiong’ershan Area,Western Henan Province[J].Contributions to Geology and Mineral Resources Research,1994,9(1):54-64.
[62] NI Z Y,CHEN Y J,LI N,et al.Pb-Sr-Nd Isotope Constrains on the Fluid Source of the Dahu Au-Mo Deposit in Qinling Orogen,Central China,and Implication for Triassic Tectonic Setting[J].Ore Geology Reviews,2012,46:60-67.
[63] 武 广,陈毓川,李宗彦,等.豫西银家沟硫铁多金属矿床流体包裹体和同位素特征[J].地质学报,2013,87(3):353-374.
WU Guang,CHEN Yu-chuan,LI Zong-yan,et al.Fluid Inclusion and Isotopic Characteristics of the Yinjiagou Pyrite-polymetallic Deposit,Western Henan Province,China[J].Acta Geologica Sinica,2013,87(3):353-374.
[64] OHMOTO H,RYE R O.Isotopes of Sulfur and Carbon[M]∥BARNES H L.Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley and Sons,1979.
[65] MACFRARLANE A W,MARCET P,LEHURAY A P,et al.Lead Isotope Provinces of the Central Andes Inferred from Ores and Crustal Rocks[J].Economic Geology,1990,85(8):1857-1880.
[66] ZARTMAN R E,SMITH J V.Mineralogy and U-Th-Pb Age of a Uranium-bearing Jasperoid Vein,Sunshine Mine,Coeur D’Alene District,Idaho,USA[J].Chemical Geology,2009,261(1/2):185-195.
[67] HAEST M,SCHNEIDER J,CLOQUET C,et al.Pb Isotopes Constraints on the Formation of the Dikulushi Cu-Pb-Zn-Ag Mineralization,Kundelungu Plateau(Democratic Republic of Congo)[J].Mineralium Deposita,2010,45(4):393-410.
[68] 张 乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238.
ZHANG Qian,PAN Jia-yong,SHAO Shu-xun.An Interpretation of Ore Lead Sources from Lead Isotopic Compositions of Some Ore Deposits in China[J].Geochimica,2000,29(3):231-238.
[69] 刘 军,武 广,陈方伍,等.河南省石寨沟金矿床成矿流体特征及硫铅同位素研究[J].中国地质,2012,39(6):1798-1811.
LIU Jun,WU Guang,CHEN Fang-wu,et al.Fluid Inclusion and S,Pb Isotope Study of the Shizhaigou Gold Deposit in Henan Province[J].Geology in China,2012,39(6):1798-1811.
[70] BARNES H L.Solubilities of Ore Minerals[M]∥BARNES H L.Geochemistry of Hydrothermal Ore Deposits.2nd ed.New York:John Wiley and Sons,1979:404-460.
[71] RAMBOZ C,PICHAVANT M,WEISBROD A.Fluid Immiscibility in Natural Processes:Use and Misuse of Fluid Inclusion Data,II.Interpretation of Fluid Inclusion Data in Terms of Immiscibility[J].Chemical Geo-logy,1982,37(1/2):29-48.
[72] ROBB L.Hydrothermal Processes[M]∥ROBB L.Introduction to Ore-forming Processes.New York:John Wiley and Sons,2004:191-233.
[73] BENNING L G,SEWARD T M.Hydrosulphide Complexing of Au(I)in Hydrothermal Solutions from 150 ℃-400 ℃ and 500-1 500 bar[J].Geochimica et Cosmochimica Acta,1996,60(11):1849-1871.
[74] MIKUCKI E J.Hydrothermal Transport and Depositional Processes in Archean Lode-gold Systems:A Review[J].Ore Geology Review,1998,13(1/2/3/4/5):307-321.
[75] PHILLIPS G N,EVANS K A.Role of CO2 in the Formation of Gold Deposits[J].Nature,2004,429:860-863.
[76] 卢焕章.CO2流体与金矿化:流体包裹体的证据[J].地球化学,2008,37(4):321-328.
LU Huan-zhang.Role of CO2 Fluid in the Formation of Gold Deposits:Fluid Inclusion Evidences[J].Geochimica,2008,37(4):321-328.
[77] 卢焕章.流体不混溶性和流体包裹体[J].岩石学报,2011,27(5):1253-1261.
LU Huan-zhang.Fluid Immiscibility and Fluid Inclusions[J].Acta Petrologica Sinica,2011,27(5):1253-1261.
[78] NI P,WANG G G,CHEN H,et al.An Early Paleozoic Orogenic Gold Belt Along the Jiang-Shao Fault,South China:Evidence from Fluid Inclusions and Rb-Sr Dating of Quartz in the Huangshan and Pingshui Deposits[J].Jourmal of Asian Earth Sciences,2015,103:87-102.
[79] 姚宗仁.河南小秦岭层控金矿定位机制的讨论[J].河南地质,1986,4(1):1-8.
YAO Zong-ren.Discussion on the Positioning Mechanism of the Xiaoqinling Strata-controlled Gold Deposit in Henan[J].Henan Geology,1986,4(1):1-8.

Memo

Memo:
-
Last Update: 2020-09-20