|Table of Contents|

Application of Multi-electrode Resistivity Method in Groundwater Level Detection in Loess Tableland of Jingyang Area, Shaanxi, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2020年第06期
Page:
791-800
Research Field:
电磁法勘探专辑
Publishing date:

Info

Title:
Application of Multi-electrode Resistivity Method in Groundwater Level Detection in Loess Tableland of Jingyang Area, Shaanxi, China
Author(s):
BAI Yang FENG Bing* ZHANG Ji-feng
School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China
Keywords:
electrical prospecting loess landslide multi-electrode resistivity method groundwater level apparent resistivity vertical derivative of apparent resistivity moisture Shaanxi
PACS:
P631.3
DOI:
10.19814/j.jese.2020.08024
Abstract:
Loess landslides frequently occur in the southern loess tableland of Jingyang area, Shaanxi province, which have caused serious impacts on local agricultural production and economic development. The occurrence mechanism of loess landslide is related to the underground water level and the loess moisture, so it is very important to find out the distribution of underground water level for the prediction and stability analysis of loess landslide. The distribution of underground medium resistivity in the landslide area was understood by means of multi-electrode resistivity method, and the distribution of underground water level in the landslide area was inferred based on the relationship between moisture, apparent resistivity, vertical derivative of apparent resistivity and depth of underground medium. Through the verification of borehole and geological data, the inferred results are basically consistent with the existing data, and good exploration results have been obtained. The results show that when the moisture of a certain depth is about 30%, the apparent resistivity is about 30 Ω·m, and the vertical derivative of apparent resistivity reaches its peak, it can be basically inferred that the underground water level exists in this depth. Therefore, in the prediction and analysis of loess landslide disaster, the multi-electrode resistivity method is taken as the exploration method, and the relationships between moisture, apparent resistivity,vertical derivative of apparent resistivity and depth are taken as the judgment basis, the depth of underground water level can be determined more accurately.

References:

[1] 许 领,戴福初,闵 弘,等.泾阳南塬黄土滑坡类型与发育特征[J].地球科学,2010,35(1):155-160. XU Ling,DAI Fu-chu,MIN Hong,et al.Loess Landslide Types and Topographic Features at South Jing-yang Plateau,China[J].Earth Science,2010,35(1):155-160.
[2] 董理金,闻人霞,陈 敏.磁流体探测技术在边坡工程中的应用研究[J].工程勘查,2017(增2):118-123. DONG Li-jin,WEN Ren-xia,CHEN Min.Study on Application of Underground Magneto Fluid Detection Method in Slope Engineering[J].Geotechnical Investigation and Surveying,2017(S2):118-123.
[3] 黄采伦,应文亮.找水用地下磁流体检测力法及检测仪:中国,98112538.7[P].2003-12-10. HUANG Cai-lun,YING Wen-liang.Using Underground Magneto Fluid Detection Method and the Detector to Find Water:China,98112538.7[P].2003-12-10.
[4] 林 君.核磁共振找水技术的研究现状与发展趋势[J].地球物理学进展,2010,25(2):681-691. LIN Jun.Situation and Progress of Nuclear Magnetic Resonance Technique for Groundwater Investigations[J].Progress in Geophys,2010,25(2):681-691.
[5] 张嘉蕾.矩形大回线源瞬变电磁法全区视电阻率在地下水资源勘探中应用[J].内蒙古科技与经济,2016(22):76-79. ZHANG Jia-lei.Application of Total Apparent Resistivity in Groundwater Resource Exploration Using Rectangular Large Loop Transient Electromagnetic Method[J].Inner Mongolia Science Technology and Economy,2016(22):76-79.
[6] 罗树应.地球物理测井在找水中的应用[J].资源信息与工程,2017,32(4):78-79. LUO Shu-ying.Application of Geophysical Logging in Water Prospecting[J].Resource Information and Engineering,2017,32(4):78-79.
[7] 王 纬.地球物理勘探电阻率法找水在农村饮用水巩固提升工程中的应用[J].西部资源,2018(4):174-175. WANG Wei.Application of Geophysical Prospecting for Water by Resistivity Method in Rural Drinking Water Consolidation and Upgrading Project[J].Western Resources,2018(4):174-175.
[8] 周 磊,曹创华,邓 专,等.城镇有限场地条件下的物探找水试验[J].城市地质,2019,14(1):97-102. ZHOU Lei,CAO Chuang-hua,DENG Zhuan,et al.Case Study of Geophysical Prospecting Water Under the Condition of Limited Site in Urban Areas[J].Urban Geology,2019,14(1):97-102.
[9] 王 红,张叶鹏,曹 恒,等.湘东地区红层盆地找水物探方法有效性试验研究[J].物探化探计算技术,2019,41(5):653-658. WANG Hong,ZHANG Ye-peng,CAO Heng,et al.The Study on the Effectiveness of Geophysical Methods to Find Water in Red Basin Areas in Eastern Hunan[J].Computing Techniques for Geophysical and Geochemical Exploration,2019,41(5):653-658.
[10] 宋洪伟,夏 凡,孙士辉.太行山贫水区含水层结构物性特征研究[J].矿产与地质,2019,33(4):698-702. SONG Hong-wei,XIA Fan,SUN Shi-hui.Study on Geophysical Characteristics of Aquifer Structures in Taihang Mountain Water-shortage Area[J].Mineral Resources and Geology,2019,33(4):698-702.
[11] 杨天春,陈卓超,梁 竞,等.天然电场选频测深法在地下水勘探中的异常理论分析与实践应用[J].地学前缘,2020,27(4):302-310. YANG Tian-chun,CHEN Zhuo-chao,LIANG Jing,et al.Theoretical Analysis of Sounding Anomaly and Field Application of the Natural Electric Field Frequency Selection Sounding Method in Groundwater Exploration[J].Earth Science Frontiers,2020,27(4):302-310.
[12] 李 富,邓国仕,袁建飞,等.断层破碎带综合地球物理找水模式:以干田坝村探采结合井为例[J].中国岩溶,2019,38(3):344-352. LI Fu,DENG Guo-shi,YUAN Jian-fei,et al.Comprehensive Geophysical Model for Water Prospecting in Fault Fracture Zone:A Case Study of Water Supply Well Siting at Gantianba Village[J].Carsologica Sinica,2019,38(3):344-352.
[13] 刘振夏,陈植华,龚 冲.高密度电法在变质岩山区找水中的应用研究[J].地下水,2019,41(1):81-82. LIU Zhen-xia,CHEN Zhi-hua,GONG Chong.Study on Application of High Density Electrical Method in Looking for Water in Metamorphic Rocky Mountain Area[J].Ground Water,2019,41(1):81-82.
[14] 黄国民,李世平,陶 毅,等.广西碎屑岩地区电法找水实例[J].物探与化探,2019,43(1):77-83. HUANG Guo-min,LI Shi-ping,TAO Yi,et al.A Case Study of Water Prospecting by Electrical Method in Clastic Rock Area of Guangxi[J].Geophysical and Geochemical Exploration,2019,43(1):77-83.
[15] 查甫生,刘松玉,杜延军,等.击实黄土的电阻率特性试验研究[J].岩土力学,2011,32(增2):155-158. CHA Fu-sheng,LIU Song-yu,DU Yan-jun,et al.Characteristics of Electrical Resistivity of Compacted Loess[J].Rock and Soil Mechanics,2011,32(S2):155-158.
[16] 樊新建,冀 宏,刘小平,等.甘肃旱地黄土含水量与土壤电阻关系研究[J].安徽农业科学,2008,36(20):8707-8708. FAN Xin-jian,JI Hong,LIU Xiao-ping,et al.Study on the Relationship Between Soil Moisture Content and Soil Resistance in Upland Loess in Gansu Pro-vince[J].Journal of Anhui Agricultural Sciences,2008,36(20):8707-8708.
[17] 段 旭,王彦辉,李贤忠,等.云雾山草坡和泾川刺槐林坡面土壤电阻率和含水率的空间差异[J].生物学杂志,2012,31(3):632-639. DUAN Xu,WANG Yan-hui,LI Xian-zhong,et al.Spatial Differences of Soil Electrical Resistivity and Moisture Content in Slope Grassland in Yunwu Mountains and in Slope Locust Forestland in Jingchuan Mountains,Northwest China[J].Chinese Journal of Ecology,2012,31(3):632-639.
[18] 张先林,许 强,彭大雷,等.高密度电法在黑方台地下水探测中的应用[J].地球物理学进展,2017,32(4):1862-1867. ZHANG Xian-lin,XU Qiang,PENG Da-lei,et al.Application of High-density Resistivity Method to Groundwater Exploration in Heifangtai[J].Progress in Geophysics,2017,32(4):1862-1867.
[19] 段 钊,李文可,王启耀.泾河下游台塬区黄土滑坡类型与时空分布规律[J].西安科技大学学报,2015,35(3):369-375. DUAN Zhao,LI Wen-ke,WANG Qi-yao.Types and Spatial-temporal Distribution of Loess Landslides in the South Plateau of Lower Jing River[J].Journal of Xi'an University of Science and Technology,2015,35(3):369-375.
[20] 雷祥义.黄土高原地质灾害与人类活动[M].北京:地质出版社,2001. LEI Xiang-yi.Geological Hazards and Human Activities on the Loess Plateau[M].Beijing:Geological Publishing House,2001.
[21] 桑广书,冯利华,商丽华.泾河下游南岸台塬边坡稳定性与滑坡诱因分析[J].水土保持学报,2007,21(5):187-191. SANG Guang-shu,FENG Li-hua,SHANG Li-hua.Study on Stability of Tableland Slopes and Causes for Landslides on Southern-bank of Lower Reaches of Jinghe River[J].Journal of Soil and Water Conservation,2007,21(5):187-191.
[22] 张秦华,张华勋,刘晓娟,等.泾阳县地质灾害时空分布规律与形成条件研究[J].地下水,2018,40(4):158-170. ZHANG Qin-hua,ZHANG Hua-xun,LIU Xiao-juan,et al.Study on Spatio-temporal Distribution and Formation Conditions of Geological Hazards in Jingyang County[J].Ground Water,2018,40(4):158-170.
[23] 魏 来,张世旭,龙 斌.高密度电法在岩溶路基勘察中的应用[J].工程技术,2020(9):172-173. WEI Lai,ZHANG Shi-xu,LONG Bin.Application of Multi-electrode Resistivity Method in Karst Subgrade Investigation[J].Engineering Technique,2020(9):172-173.
[24] 王 磊,李孝波,苏占东,等.高密度电法在黄土-泥岩接触面滑坡勘察中的应用[J].地质力学学报,2019,25(4):536-543. WANG Lei,LI Xiao-bo,SU Zhan-dong,et al.Application of High-density Electrical Method in Loess-mudstone Interface Landslide Investigation[J].Journal of Geomechanics,2019,25(4):536-543.
[25] 董浩斌,王传雷.高密度电法的发展与应用[J].地学前缘,2003,10(1):171-176. DONG Hao-bin,WANG Chuan-lei.Development and Application of 2D Resistivity Imaging Surveys[J].Earth Science Frontiers,2003,10(1):171-176.
[26] 严加永,孟贵祥,吕庆田,等.高密度电法的进展与展望[J].物探与化探,2012,36(4):576-584. YAN Jia-yong,MENG Gui-xiang,LU Qing-tian,et al.The Progress and Prospect of the Electrical Resistivity Imaging Survey[J].Geophysical and Geochemical Exploration,2012,36(4):576-584.
[27] 王士鹏.高密度电法在水文地质和工程地质中的应用[J].水文地质工程地质,2000,27(1):52-56. WANG Shi-peng.Application of High-density Ele-ctrical Method in Hydrogeology and Engineering Geo-logy[J].Hydrogeology and Engineering Geology,2000,27(1):52-56.
[28] 吕玉增,阮百尧.高密度电法工作中的几个问题研究[J].工程地球物理学报,2005,2(4):264-269. LU Yu-zeng,RUAN Bai-yao.Discuss Several Pro-blems About High Density Resistivity[J].Chinese Journal of Engineering Geophysics,2005,2(4):264-269.
[29] 闫亚景,闫永帅,赵贵章,等.基于高密度电法的天然边坡水分运移规律研究[J].岩土力学,2019,40(7):2807-2814. YAN Ya-jing,YAN Yong-shuai,ZHAO Gui-zhang,et al.Study on Moisture Migration in Natural Slope Using High-density Electrical Resistivity Tomogra-phy Method[J].Rock and Soil Mechanics,2019,40(7):2807-2814.
[30] 何清立,李霄龙,王志勇,等.高密度电法在滑坡地质灾害勘查治理中的应用[J].工程地球物理学报,2016,13(1):99-104. HE Qing-li,LI Xiao-long,WANG Zhi-yong,et al.The Application of High Density Electrical Method to the Exploration Management of Landslide Geological Di-sasters[J].Chinese Journal of Engineering Geophy-sics,2016,13(1):99-104.

Memo

Memo:
-
Last Update: 2020-12-20