|Table of Contents|

Sedimentary Environment and Genesis of Organic Matter Enrichment of Late Ordovician-Early Silurian Black Shale in the Fore Deep Zone, the Southwestern Lower Yangtze Basin, China—A Case Study of Well WDD1(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第02期
Page:
312-326
Research Field:
沉积地质与油气勘探
Publishing date:

Info

Title:
Sedimentary Environment and Genesis of Organic Matter Enrichment of Late Ordovician-Early Silurian Black Shale in the Fore Deep Zone, the Southwestern Lower Yangtze Basin, China—A Case Study of Well WDD1
Author(s):
FANG Chao-gang123 ZHANG Cheng-cheng1* LIN Hong4 HAN Jin2 TENG Long1 ZHOU Dao-rong1 LI Jian-qing1
(1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China; 2. School of Earth Sciences, Yunnan University, Kunming 650091, Yunnan, China; 3. Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan 430205, Hubei, China; 4. Institute of Geological Sciences of Jiangxi Province, Nanchang 330052, Jiangxi, China)
Keywords:
black shale sedimentary environment Wufeng Formation Gaojiabian Formation organic matter enrichment chemical index of alteration paleoproductivity Lower Yangtze region
PACS:
P588.2; P595
DOI:
10.19814/j.jese.2021.10022
Abstract:
Lithofacies paleogeography shows that a set of black shale in the foreland basin front zone is mainly developed in the Lower Yangtze region at the turn of Ordovician-Silurian, and the Lower Yangtze region is obviously different with the Middle and Upper Yangtze regions. The study on the sedimentary environment evolution of the black shale is relatively weak, especially the related study on organic matter enrichment. Therefore, it is necessary to clarify the sedimentary environment and organic matter enrichment mechanism of Wufeng Formation-Gaojiabian Formation shale in the Lower Yangtze region, which is of great significance for deepening the understanding of shale gas enrichment law. Based on the continuous underground core data obtained by the latest shale gas geological survey well(WDD1)in the southwest of the Lower Yangtze region, 38 core samples were tested for organic carbon, major and trace elements. The vertical variation characteristics of major and trace elements in the profile and their relationship with the sedimentary environment of the basin were analyzed. The main controlling factors of organic matter enrichment of Ordovician-Silurian shale in the southwest of the Lower Yangtze region were discussed. The results show that Wufeng Formation and the second member of Gaojiabian Formation are enriched in organic matter, and the CIAcorr value indicates that the climate of Jiangnan transitional zone is relatively warm and humid at the turn of Ordovician-Silurian. Contents of Babio, Cu, Zn and other indicators confirm Wufeng-Gaojiabian deposition period has a high level of paleoproductivity; V/Cr, V/(V+Ni)and V/Sc values reveal that the bottom water of Wufeng Formation during the deposition period is an anaerobic sulfide state, and the bottom water of the first member of Gaojiabian Formation during the deposition period is converted into an oxygen-poor oxidation state. Diagram of Mo-TOC and covariation diagram of EFMo-EFU show that Wufeng deposition period is medium-retention sedimentary environment, and Gaojiabian deposition period is medium-weak retention sedimentary environment. TOC shows a weak positive correlation with contents of Al and Ti in Wufeng deposition period, while it turns into a negative correlation in Gaojiabian deposition period. The enrichment mechanism of organic matter in black shale of Wufeng Formation and Gaojiabian Formation is different. The main controlling factor of organic matter enrichment in black shale of Wufeng Formation is the semi-retention environment of reduction-sulfidation, and the nutrients brought by terrigenous clastic input promote to some extent. The differences in the enrichment mechanism between Wufeng Formation and Gaojiabian Formation show that the paleo-ocean environment in the Lower Yangtze region has undergone significant changes at the turn of Ordovician-Silurian.

References:

[1] 梁狄刚,郭彤楼,边立曾,等.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J].海相油气地质,2008,14(2):1-19.
LIANG Di-gang,GUO Tong-lou,BIAN Li-zeng,et al.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions,Southern China(Part 3):Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks[J].Marine Origin Petroleum Geology,2008,14(2):1-19.
[2] 董大忠,程克明,王玉满,等.中国上扬子区下古生界页岩气形成条件及特征[J].石油与天然气地质,2010,31(3):288-299,308.
DONG Da-zhong,CHENG Ke-ming,WANG Yu-man,et al.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region,China[J].Oil and Gas Geology,2010,31(3):288-299,308.
[3] 郑宇龙,牟传龙,王秀平.四川盆地南缘五峰组—龙马溪组沉积地球化学及有机质富集模式——以叙永地区田林剖面为例[J].地球科学与环境学报,2019,41(5):541-560.
ZHENG Yu-long,MOU Chuan-long,WANG Xiu-ping.Sedimentary Geochemistry and Patterns of Organic Matter Enrichment of Wufeng-Longmaxi Formations in the Southern Margin of Sichuan Basin,China—A Case Study of Tianlin Profile in Xuyong Area[J].Journal of Earth Sciences and Environment,2019,41(5):541-560.
[4] HE Z,HU Z,NIE H,et al.Characterization of Shale Gas Enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and Evaluation of Its Geological Construction-transformation Evolution Sequence[J].Journal of Natural Gas Geoscience,2017,2(1):1-10.
[5] 张春明,张维生,郭英海.川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J].地学前缘,2012,19(1):137-145.
ZHANG Chun-ming,ZHANG Wei-sheng,GUO Ying-hai.Sedimentary Environment and Its Effect on Hydrocarbon Souce Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou[J].Earth Science Frontiers,2012,19(1):137-145.
[6] 李双建,肖开华,沃玉进,等.南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J].沉积学报,2008,26(5):872-880.
LI Shuang-jian,XIAO Kai-hua,WO Yu-jin,et al.Developmental Controlling Factors of Upper Ordovician-Lower Silurian High Quality Source Rocks in Marine Sequence,South China[J].Acta Sedmentologica Sinica,2008,26(5):872-880.
[7] WANG Y M,LI X J,DONG D Z,et al.Major Controlling Factors for the High-quality Shale of Wufeng-Longmaxi Formation,Sichuan Basin[J].Energy Exploration and Exploitation,2017,35(4):444-462.
[8] 李琪琪,蓝宝锋,李刚权,等.黔中隆起北缘五峰—龙马溪组页岩元素地球化学特征及其地质意义[J].地球科学,2021,46(9):3172-3188.
LI Qi-qi,LAN Bao-feng,LI Gang-quan,et al.Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift[J].Earth Science,2021,46(9):3172-3188.
[9] XIAO B,LIU S,LI Z,et al.Geochemical Characteristics of Marine Shale in the Wufeng Formation-Longmaxi Formation in the Northern Sichuan Basin,South China and Its Implications for Depositional Controls on Organic Matter[J].Journal of Petroleum Science and Engineering,2021,203:108618.
[10] YAN C,JIN Z,ZHAO J,et al.Influence of Sedimentary Environment on Organic Matter Enrichment in Shale:A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin,China[J].Marine and Petroleum Geology,2018,92:880-894.
[11] LIANG C,JIANG Z,CAO Y,et al.Sedimentary Characteristics and Paleoenvironment of Shale in the Wu-feng-Longmaxi Formation,North Guizhou Province,and Its Shale Gas Potential[J].Journal of Earth Science,2017,28(6):1020-1031.
[12] 贾 东,胡文瑄,姚素平,等.江苏省下志留统黑色页岩浅井钻探及其页岩气潜力分析[J].高校地质学报,2016,22(1):127-137.
JIA Dong,HU Wen-xuan,YAO Su-ping,et al.Shallow Borehole Drilling of the Lower Silurian Black Shale in Jiangsu Province and the Shale Gas Potential Analysis[J].Geological Journal of China Univer-sities,2016,22(1):127-137.
[13] 方朝刚,黄正清,滕 龙,等.下扬子地区晚奥陶世凯迪期—早志留世鲁丹期岩相古地理及其油气地质意义[J].中国地质,2020,47(1):144-160.
FANG Chao-gang,HUANG Zheng-qing,TENG Long,et al.Lithofacies Palaeogeography of the Late Ordovician Kaitian Stage-the Early Silurian Rhuddanian Stage in Lower Yangtze Region and Its Petroleum Geological Significance[J].Geology in China,2020,47(1):144-160.
[14] 黄正清,方朝刚,李建青,等.宁镇地区五峰组—高家边组页岩U-Mo协变模式与古海盆水体滞留程度[J].成都理工大学学报(自然科学版),2020,47(4):443-450.
HUANG Zheng-qing,FANG Chao-gang,LI Jian-qing,et al.U-Mo Covariance Model of Wufeng-Gaojiabian Formation Marine Shale in Ningjing-Zhenjiang Area and Its Implication for Water Retention Degree in Ancient Sea Basin[J].Journal of Chengdu University of Technology(Science and Technology Edition),2020,47(4):443-450.
[15] 严德天,王清晨,陈代钊,等.扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素[J].地质学报,2008,82(3):321-327.
YAN De-tian,WANG Qing-chen,CHEN Dai-zhao,et al.Sedimentary Environment and Development Controls of the Hydrocarbon Sources Beds:The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area[J].Acta Geolo-gica Sinica,2008,82(3):321-327.
[16] 陈 清,樊隽轩,张琳娜,等.下扬子区奥陶纪晚期古地理演变及华南“台-坡-盆”格局的打破[J].中国科学:地球科学,2018,48(6):767-777.
CHEN Qing,FAN Jun-xuan,ZHANG Lin-na,et al.Paleogeographic Evolution of the Lower Yangtze Region and the Break of the “Platform-slope-basin” Pattern During the Late Ordovician[J].Science China:Earth Sciences,2018,48(6):767-777.
[17] CHEN X,RONG J Y,LI Y,et al.Facies Patterns and Geography of the Yangtze Region,South China,Th-rough the Ordovician and Silurian Transition[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,204(3/4):353-372.
[18] TROTTER J A,WILLIAMS I S,BARNES C R,et al.Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry[J].Science,2008,321:550-554.
[19] FINNERGAN S,BERGMANN K,EILER J M,et al.The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation[J].Science,2011,331:903-906.
[20] FINNEGAN S,HEIM N A,PETERS S E,et al.Climate Change and the Selective Signature of the Late Ordovician Mass Extinction[J].PNAS,2012,109(18):6829-6834.
[21] NESBITT H W,YOUNG G M.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations[J].Geochimica et Cosmochimica Acta,1984,48(7):1523-1534.
[22] YOUNG G M,NESBIT H W.Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation(Paleoproterozoic),Ontario,Canada:A Chemostratigraphic Approach[J].Geology,1999,111(2):264-274.
[23] FEDO C M,NESBITT H W,YOUNG G M.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols,with Implications for Paleoweathering Conditions and Provenance[J].Geo-logy,1995,23(10):921-924.
[24] PANAHI A,YOUNG G M,RAINBIRD R H.Beha-vior of Major and Trace Elements(Including REE)During Paleoproterozoic Pedogenesis and Diagenetic Alteration of an Archean Granite near Ville Marie,Québec,Canada[J].Geochimica et Cosmochimica Acta,2000,64(13):2199-2220.
[25] 李艳芳,邵德勇,吕海刚,等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483.
LI Yan-fang,SHAO De-yong,LV Hai-gang,et al.A Relationship Between Element Geochemical Characterisitics and Organic Matter Enrichment in Marine Shale of Wufeng Formation-Longmaxi Faormation,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(12):1470-1483.
[26] MCMANU J,BERELSON W M,KLINKHAMMER G P,et al.Geochemistry of Barium in Marine Sediments:Implications for Its Use as a Paleoproxy[J].Geochimica et Cosmochimica Acta,1998,62(21/22):3453-3473.
[27] 韦恒叶.古海洋生产力与氧化还原指标:元素地球化学综述[J].沉积与特提斯地质,2012,32(2):76-88.
WEI Heng-ye.Productivity and Redox Proxies of Pa-laeo-oceans:An Overview of Elementary Geochemi-stry[J].Sedimentary Geology and Tethyan Geology,2012,32(2):76-88.
[28] 何 龙,王云鹏,陈多福,等.重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J].天然气地球科学,2019,30(2):203-218.
HE Long,WANG Yun-peng,CHEN Duo-fu,et al.Relationship Between Sedimentary Environment and Organic Matter Accumulation in the Black Shale of Wufeng-Longmaxi Formations in Nanchuan Area,Chongqing[J].Natural Gas Geoscience,2019,30(2):203-218.
[29] 邱 振,韦恒叶,刘翰林,等.异常高有机质沉积富集过程与元素地球化学特征[J].石油与天然气地质,2021,42(4):931-948.
QIU Zhen,WEI Heng-ye,LIU Han-lin,et al.Accumulation of Sediments with Extraordinary High Organic Matter Content:Insight Gained Through Geochemical Characterization of Indicative Elements[J].Oil and Gas Geology,2021,42(4):931-948.
[30] ALGEO T J,MAYNARD J B.Trace-element Beha-vior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-type Cyclothems[J].Chemical Geo-logy,2004,206(3/4):289-318.
[31] ZHENG Y,ANDERSON R F,VAN GREEN A,et al.Authigenic Molybdenum Formation in Marine Sediments:A Link to Pore Water Sulfide in the Santa Barbara Basin[J].Geochimica et Cosmochimica Acta,2000,64:4165-4178.
[32] KIMURA H,WATANABE Y.Ocean Anoxia at the Precambrian-Cambrian Boundary[J].Geology,2001,29:995-998.
[33] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1/2):12-32.
[34] PI D H,LIU C Q,SHIELDS-ZHOU G A,et al.Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province,South China:Constraints for Redox Environments and Origin of Metal Enrichments[J].Precambrian Research,2013,225:218-229.
[35] TAYLOR S R,MCLENNAN S M.The Continental Crust:Its Composition and Evolution[J].Oxford:Blackwell,1985.
[36] KIMURA H,WATANABE Y.Ocean Anoxia at the Precambrian-Cambrian Boundary[J].Geology,2001,29:995-998.
[37] ALGEO T J,LYONS T W.Mo-total Organic Carbon Covariation in Modern Anoxic Marine Environments:Implications for Analysis of Paleoredox and Paleohydrographic Conditions[J].Paleoceanography and Paleoclimatology,2006,21(1):PA001112.
[38] 何 庆,高 键,董 田,等.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J].沉积学报,2021,39(3):686-703.
HE Qing,GAO Jian,DONG Tian,et al.Elemental Geochemistry and Paleo-environmental Conditions of the Lower Cambrian Niutitang Shale in Western Hubei Province[J].Acta Sedimentologica Sinica,2021,39(3):686-703.
[39] CANFIELD D E.Factors Influencing Organic Carbon Preservation in Marine Sediments[J].Chemical Geo-logy,1994,114(3/4):315-329.
[40] KATZ M E,WRIGHT J D,MILLER K G,et al.Biological Overprint of the Geological Carbon Cycle[J].Manine Geology,2005,217(3/4):323-338.
[41] MARTIN J H,KNAUER G A.The Elemental Composition of Plankton[J].Geochimica et Cosmochimica Acta,1973,37(7):1639-1653.
[42] CALVERT S E,MUKHERJEE S,MORRIS R J.Trace Metals in Fulvic and Humic Acids from Modern Organic-rich Sediments[J].Oceanologica Acta,1985,8(2):167-173.
[43] BRUMSACK H J.The Inorganic Geochemistry of Cretaceous Black Shales(DSDP Leg 41)in Comparison to Modern Upwelling Sediments from the Gulf of California[J].Geological Society,London,Special Publications,1986,21:447-462.
[44] CALVERT S E,PEDERSEN T F.Geochemistry of Recent Oxic and Anoxic Marine Sediments:Implications for the Geological Record[J].Marine Geology,1993,113(1/2):67-88.
[45] RIBOULLEAN A,BAUDIN F,DECONINCK J F,et al.Depositional Conditions and Organic Matter Preservation Pathways in an Epicontinental Environment:The Upper Jurassic Kashpir Oil Shales(Volga Basin,Russia)[J].Palaeogeography,Palaeoclimato-logy,Palaeoecology,2003,197(3/4):171-197.
[46] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1/2):12-32.
[47] SCHOEPFER S D,SHEN J,WEI H Y,et al.Total Organic Carbon,Organic Phosphorus,and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity[J].Earth-science Reviews,2015,149:23-52.
[48] DYMOND J,SUESS E,LYLE M.Barium in Deep-sea Sediment:A Geochemical Proxy for Paleoproductivity[J].Paleoceanography and Paleoclimatology,1992,7(2):163-181.
[49] BONN W J,GINGELE F X,GROBE H,et al.Palaeoproductivity at the Antarctic Continental Margin:Opal and Barium Records for the Last 400 ka[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1998,139(3/4):195-211.
[50] ALGEO T J,ROWE H.Paleoceanographic Applications of Trace-metal Concentration Data[J].Chemical Geology,2012,324/325:6-18.

Memo

Memo:
-
Last Update: 2022-04-30