|Table of Contents|

Different Deformation of Thrust Nappe Structure in Xinji and Luolian Coalfields of Huainan Area, Anhui, China and Its Influence on Occurrence of Coalbed Methane(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第05期
Page:
750-764
Research Field:
沉积地质与油气勘探
Publishing date:

Info

Title:
Different Deformation of Thrust Nappe Structure in Xinji and Luolian Coalfields of Huainan Area, Anhui, China and Its Influence on Occurrence of Coalbed Methane
Author(s):
ZHAN Run12 ZHANG Wen-yong1 FU Xian-jie3 SUN Gui1FANG Hui-jing1 GU Cheng-chuan4
(1. Exploration Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei 230088, Anhui, China; 2. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China; 3.China Coal Xinji Energy Co. Ltd., Huainan 232001, Anhui, China; 4. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China)
Keywords:
thrust nappe structural deformation difference tectonic analysis coalbed methane basement uplift Huainan coalfield
PACS:
P618.11
DOI:
10.19814/j.jese.2022.02014
Abstract:
In order to further understand the structural deformation mechanism of the middle section of Fufeng thrust nappe structural belt in Huainan coalfield and its control on the content of coalbed methane(CBM), and guide the exploration and development of CBM, the diversity characteristics of thrust nappe structural deformation, formation mechanism and its relationship with generation and distribution of CBM were revealed in Xinji and Luolian coalfields; through detailed structural analysis and comparison, combined with regional geological background, the latest geological data of coalfield exploration and production were used to reveal the control of tectonic deformation on generation and distribution of CBM; the burial-thermal evolution history of coal-bearing strata in Xinji and Luolian coalfields was simulated by Thermodel for Windows software. The results show that Luolian coalfield is characterized by imbricated fan structural deformation, and the in-situ system structural deformation is weak under the action of Indosinian pushing from south to north; affected by the uplift of coal-series basement, Xinji coalfield is characterized by double thrust nappe structure deformation, and a large number of extensional structures are formed along the crankshaft of the fold in the in-situ system during longitudinal flexural fold deformation; the coal-bearing strata in Xinji and Luolian coalfields experience four stages of structural burial and thermal evolution history, but the paleogeothermal gradient and coal metamorphism degree in Xinji coalfield are obviously higher; the variation of paleotemperature gradient caused by the coupling of coal-series basement uplift and deformation structure is the fundamental reason for the differential generation and enrichment of CBM in Xinji and Luolian coalfields; the spatial distribution of CBM in Xinji and Luolian coalfields is obviously correlated with the tectonic position, and mainly affected by the degree of structural deformation and burial depth.

References:

[1] 张文永,朱文伟,窦新钊,等.两淮煤田煤系天然气勘探开发研究进展[J].煤炭科学技术,2018,46(1):245-252.
ZHANG Wen-yong,ZHU Wen-wei,DOU Xin-zhao,et al.Research Progress on Coal Measure Natural Gas Exploration Development in Huaibei and Huainan Coalfields[J].Coal Science and Technology,2018,46(1):245-252.
[2] 窦新钊,张文永,朱文伟,等.两淮煤田煤层气与煤炭勘查开发时空配置关系[J].煤炭学报,2016,41(增2):468-474.
DOU Xin-zhao,ZHANG Wen-yong,ZHU Wen-wei,et al.Spatial-temporal Relationship for Exploration and Development of CBM and Coal in Huainan-Huaibei Coalfield[J].Journal of China Coal Society,2016,41(S2):468-474.
[3] 高 堋,李 昭,李世臻,等.安徽阜阳地区皖阜地1井钻获海陆过渡相高品质烃源岩[J].中国地质,2020,48(5):1659-1660.
GAO Peng,LI Zhao,LI Shi-zhen,et al.High-quality Source Rocks of Marine-continental Transitional Facies Discovered by Borehole WFD-1 in the Fuyang Area of Anhui Province[J].Geology in China,2020,48(5):1659-1660.
[4] 吴 盾,张文永,朱文伟,等.淮南煤田太原组煤系非常规油气勘探开发技术[J].煤田地质与勘探,2017,45(4):13-18.
WU Dun,ZHANG Wen-yong,ZHU Wen-wei,et al.The Exploration and Development of Unconventional Oil and Gas in the Taiyuan Formation from Huainan Coalfield[J].Coal Geology and Exploration,2017,45(4):13-18.
[5] 刘 瑞,郭少斌,屈凯旋,等.南华北盆地山西组砂岩的气体来源、成岩阶段与成藏过程研究[J].石油科学通报,2021,6(3):356-368.
LIU Rui,GUO Shao-bin,QU Kai-xuan,et al.Study of Gas Source,Diagenesis Stage and Accumulation Pro-cess of the Sandstone of the Shanxi Formation in the Southern North China Basin[J].Patroleum Science Bulletin,2021,6(3):356-368.
[6] 张文永,窦新钊,刘桂建,等.淮南潘谢矿区深部煤系烃源岩地球化学特征与成烃潜力[J].煤炭学报,2020,45(2):731-739.
ZHANG Wen-yong,DOU Xin-zhao,LIU Gui-jian,et al.Geochemical Characteristics and Hydrocarbon-generation Potential of Coal-bearing Source Rocks in the Deep Part of Panxie Mining area,Huainan[J].Journal of China Coal Society,2020,45(2):731-739.
[7] 张新民,李建武,韩保山,等.淮南煤田煤层气藏划分及形成机制[J].科学通报,2005,50(增1):6-13.
ZHANG Xin-min,LI Jian-wu,HAN Bao-shan,et al.Division and Formation Mechanism of Coalbed Methane Reservoir in Huainan Coalfield[J].Chinese Science Bulletin,2005,50(S1):6-13.
[8] 詹 润,张文永,窦新钊.淮南煤田构造演化与煤系天然气成藏[J].中国煤炭地质,2017,29(10):23-29.
ZHAN Run,ZHANG Wen-yong,DOU Xin-zhao.Tec-tonic Evolution and Reservoir Formation of Natural Gas in Coal Measure,Huainan Coalfield[J].Coal Geo-logy of China,2017,29(10):23-29.
[9] 乔国栋,高 魁.淮南煤田逆冲推覆构造对煤与瓦斯突出的影响分析[J].矿业安全与环保,2020,47(2):109-113.
QIAO Guo-dong,GAO Kui.Analysis on the Influence of Thrust Nappe Structure on Coal and Gas Outburst in Huainan Coalfield[J].Mining Safety and Environmental Protection,2020,47(2):109-113.
[10] 窦新钊,张文永,孙 贵,等.淮南煤田连塘里井田煤层气地质特征[J].中国煤炭地质,2019,31(6):31-37.
DOU Xin-zhao,ZHANG Wen-yong,SUN Gui,et al.CBM Geological Features in Liantangli Minefield,Huainan Coalfield[J].Coal Geology of China,2019,31(6):31-37.
[11] 高婕妤,姜 波.淮南新集一矿瓦斯赋存的构造控制作用[J].中国煤炭地质,2011,23(2):22-26.
GAO Jie-yu,JIANG Bo.Structural Control on Gas Occurrence in Xinji No.1 Coalmine,Huainan[J].Coal Geology of China,2011,23(2):22-26.
[12] 雷崇利.新集矿区煤层气开发有利区块评价与优选方法探讨[D].西安:西北大学,2004.
LEI Chong-li.Discussion on Favorable Block Evaluation and Optimization Method for Coalbed Methane Development in Xinji Mining Area[D].Xi'an:Northwest University,2004.
[13] 王厚柱,金吕锋.新集井田推覆构造F02断层分布特征[J].矿业安全与环保,2005,32(2):66-67.
WANG Hou-zhu,JIN Lu-feng.Distribution Characteristics of F02 Fault in Nappe Structure of Xinji Mine Field[J].Mining Safety and Enviromental Protection,2005,32(2):66-67.
[14] 姜 波.淮南煤田逆冲叠瓦扇构造系统[J].煤田地质与勘探,1993,21(6):12-17.
JIANG Bo.Thrust Imbricate Fan Tectonic System of Huainan Coal Mine[J].Coal Geology and Exploration,1993,21(6):12-17.
[15] 张 泓,郑玉柱,郑高升,等.安徽淮南煤田阜凤推覆体之下的伸展构造及其形成机制[J].煤田地质与勘探,2003,31(3):1-4.
ZHANG Hong,ZHENG Yu-zhu,ZHENG Gao-sheng,et al.Extensional Structure Under the Fufeng Nappe in Huainan Coalfield,Anhui Province,and Its Formative Mechanism[J].Coal Geology and Exploration,2003,31(3):1-4.
[16] 宋传中,朱 光,刘国生,等.淮南煤田构造厘定及动力学控制[J].煤田地质与勘探,2005,33(1):11-15.
SONG Chuan-zhong,ZHU Guang,LIU Guo-sheng,et al.Identificating of Structure and Its Dynamics Control of Huainan Coalfield[J].Coal Geology and Exploration,2005,33(1):11-15.
[17] 朱 光,王勇生,王道轩,等.前陆沉积与变形对郯庐断裂带同造山运动的制约[J].地质科学,2006,41(1):102-121.
ZHU Guang,WANG Yong-sheng,WANG Dao-xuan,et al.Constraints of Foreland Sedimentation and Deformation on Synorogenic Motion of the Tan-Lu Fault Zone[J].Chinese Journal Geology,2006,41(1):102-121.
[18] DAHLEN F A.Critical Tape Model of Fold-and-thrust Belts and Accretionary Wedges[J].Annual Reviews of Earth and Planetary Sciences,1990,18:55-99.
[19] 刘少锋,张国伟.大别造山带周缘盆地发育及其对碰撞造山过程的指示[J].科学通报,2013,58(1):1-26.
LIU Shao-feng,ZHANG Guo-wei.Mesozoic Basin De-velopment and Its Indication of Collisional Orogeny in the Dabie Orogen[J].Chinese Science Bulletin,2013,58(1):1-26.
[20] 董云鹏,赖绍聪,第五春荣,等.中国大陆“十字构造带”关键科学问题研究进展[J].西北大学学报(自然科学版),2021,51(6):935-950.
DONG Yun-peng,LAI Shao-cong,DIWU Chun-rong,et al.Research Progress on Key Scientific Issues of “Cross-tectonics” in China Continent[J].Journal of Northwest University(Natural Science Edition),2021,51(6):935-950.
[21] 朱日祥,陈 凌,吴福元,等.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学,2011,41(5):583-592.
ZHU Ri-xiang,CHEN Ling,WU Fu-yuan,et al.Timing,Scale and Mechanism of the Destruction of the North China Craton[J].Science China:Earth Sciences,2011,41(5):583-592.
[22] ZHU G,JIANG D Z,ZHANG B L,et al.Destruction of the Eastern North China Craton in a Backarc Setting:Evidence from Crustal Deformation Kinematics[J].Gondwana Research,2012,22(1):86-103.
[23] 朱 光,刘 程,顾承串,等.郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J].中国科学:地球科学,2018,48(4):415-435.
ZHU Guang,LIU Cheng,GU Cheng-chuan,et al.Ocea-nic Plate Subduction History in the Western Pacific Ocean:Constraint from Late Mesozoic Evolution of the Tan-Lu Fault Zone[J].Science China:Earth Sciences,2018,48(4):415-435.
[24] 朱 光,陆元超,苏 楠,等.华北克拉通早白垩世地壳变形规律与动力学[J].中国科学:地球科学,2021,51(9):1420-1443.
ZHU Guang,LU Yuan-chao,SU Nan,et al.Crustal Deformation and Dynamics of Early Cretaceous in the North China Craton[J].Science China:Earth Sciences,2021,51(9):1420-1443.
[25] 韩树棻.两淮地区成煤地质条件及成煤预测[M].北京:地质出版社,1990.
HAN Shu-fen.Geological Conditions and Prediction of Coal Formation in Lianghuai Area[M].Beijing:Geological Publishing House,1990.
[26] 魏振岱.安徽省煤炭资源赋存规律与找煤预测[M].北京:地质出版社,2015.
WEI Zhen-dai.Occurrence Law and Prediction of Coal Resources in Anhui Province[M].Beijing:Geological Publishing House,2015.
[27] 王桂梁,曹代勇,姜 波.华北南部逆冲推覆、伸展滑覆和重力滑动构造[M].徐州:中国矿业大学出版社,1992.
WANG Gui-liang,CAO Dai-yong,JIANG Bo.The Thrust Nappe,Extensional Slip Nappe and Gravity Slip Tectonics in Southern North China[M].Xuzhou:China University of Mining and Technology Press,1992.
[28] COUZENS-SCHULTZ B A,VENDEVILLE B C,WILTSVHKO D V.Duplex Style and Triangle Zone Formation:Insights from Physical Modeling[J].Journal of Structural Geology,2003,25(10):1623-1644.
[29] DAVIS G H,REYNOLDS S J,KLUTH C F.Structural Geology of Rocks and Regions[M].3rd ed.Hoboken:John Wiley and Sons,2011.
[30] 侯泉林.高等构造地质学[M].北京:科学出版社,2020.
HOU Quan-lin.Higher Tectonic Geology[M].Beijing:Science Press,2020.
[31] 任自强,彭 涛,沈书豪,等.淮南煤田现今地温场特征[J].高校地质学报,2015,21(1):147-154.
REN Zi-qiang,PENG Tao,SHEN Shu-hao,et al.The Distribution Characteristics of Current Geothermal Field in Huainan Coalfield[J].Geological Journal of China Universities,2015,21(1):147-154.
[32] 毛小平.地热田高地温异常成因机理及温度分布特征[J].地球学报,2019,39(2):216-224.
MAO Xiao-ping.Genetic Mechanism and Distribution Characteristics of High Temperature Anomaly in Geothermal Field[J].Acta Geoscientica Sinica,2019,39(2):216-224.
[33] 吴基文,王广涛,翟晓荣,等.淮南矿区地热地质特征与地热资源评价[J].煤炭学报,2019,44(8):2566-2578.
WU Ji-wen,WANG Guang-tao,ZHAI Xiao-rong,et al.Geothermal Geological Characteristics and Geothermal Resources Evaluation of Huainan Mining Area[J].Journal of China Coal Society,2019,44(8):2566-2578.
[34] 彭 涛,吴基文,任自强,等.两淮煤田大地热流分布及其构造控制[J].地球物理学报,2015,58(7):2391-2401.
PENG Tao,WU Ji-wen,REN Zi-qiang,et al.Distribution of Terrestrial Heat Flow and Structual Control in Huainan-Huaibei Coalfield[J].Chinese Journal of Geophysics,2015,58(7):2391-2401.
[35] 宋 岩,张新民,柳少波.中国煤层气地质与开发基础理论[M].北京:科学出版社,2012.
SONG Yan,ZHANG Xin-min,LIU Shao-bo.Basic Theory of Coalbed Methane Geology and Development in China[M].Beijing:Science Press,2012.
[36] 张雷林,秦波涛,陶文枝,等.新集二矿突出预测敏感性指标及其临界值确定[J].煤矿安全,2012,43(11):163-167.
ZHANG Lei-lin,QIN Bo-tao,TAO Wen-zhi,et al.Research on Sensitive Indexes and Critical Value of Coal and Gas Outburst Prediction in Xinji No.2 Coal Mine[J].Safety in Coal Mines,2012,43(11):163-167.
[37] 秦 勇,刘焕杰,李贵中,等.煤层气生成与煤层气富集Ⅰ:有效阶段生气量与煤层气富集[J].煤田地质与勘探,1997,25(6):6-17.
QIN Yong,LIU Huan-jie,LI Gui-zhong,et al.Gene-ration and Enrichment of Coalbed Methane-gas Yield in Effective Stage and Concentration of Coalbed Me-thane[J].Coal Geology and Exploration,1997,25(6):6-17.
[38] 孙 贵,邵军战,叶诗忠,等.安徽省颍上县罗园井田煤炭勘探报告[R].合肥:安徽省煤田地质局勘查研究院,2007.
SUN Gui,SHAO Jun-zhan,YE Shi-zhong,et al.The Report of Coal Exploration in Luoyuan Coalfield,Yingshang County,Anhui Province[R].Hefei:Exploration Research Institute,Anhui Provincial Bureau of Coal Geology,2007.
[39] 邵军战,夏志刚,朱文伟,等.安徽省颍上县连塘里井田煤炭勘探报告[R].合肥:安徽省煤田地质局勘查研究院,2018.
SHAO Jun-zhan,XIA Zhi-gang,ZHU Wen-wei,et al.The Report of Coal Exploration in Liantangli Coal Field,Yingshang County,Anhui Province[R].Hefei:Exploration Research Institute,Anhui Provincial Bureau of Coal Geology,2018.

Memo

Memo:
-
Last Update: 2022-10-01