|Table of Contents|

Co-seismic Deformation Field and Fault Slip Distribution of the 2021 Maduo Mw 7.4 Earthquake in Qinghai, China Based on InSAR Technology(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第06期
Page:
1016-1026
Research Field:
纪念刘国昌先生诞辰110周年专辑
Publishing date:

Info

Title:
Co-seismic Deformation Field and Fault Slip Distribution of the 2021 Maduo Mw 7.4 Earthquake in Qinghai, China Based on InSAR Technology
Author(s):
WANG Shou-wen1 JI Ling-yun12* ZHU Liang-yu2 LIU Chuan-jin2
(1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 2. The Second Monitoring and Application Center of China Earthquake Administration, Xi'an 710054, Shaanxi, China)
Keywords:
Maduo Mw 7.4 earthquake geodesy InSAR co-seismic deformation fault slip earthquake source parameter joint inversion
PACS:
P315; P23
DOI:
10.19814/j.jese.2022.04017
Abstract:
On May 22, 2021, the Mw 7.4 earthquake occurred in Maduo county of Qinghai province. In order to study the co-seismic deformation, slip distribution, static Coulomb stress changes and effects of Maduo Mw 7.4 earthquake, the image data of sentinel-1 A/B satellite's ascending and descending SAR were selected, and D-InSAR technology was used to obtain the co-seismic deformation field of Maduo Mw 7.4 earthquake. Based on the steepest decent method(SDM), combined with GPS and InSAR co-seismic deformation data, the inversion of the co-seismic sliding distribution was constrained jointly. The results show that the co-seismic deformation field caused by Maduo Mw 7.4 earthquake has a very wide range of effects, resulting in surface ruptures of 170 km in length; earthquakes cause the maximum 1.2 m of the LOS on the surface and the maximum relative displacement of 2.2 m for uplift and sedimentation; the overall average direction of Maduo Mw 7.4 earthquake fault is 283°, the average sliding angle is 21°, and the inclination angle is 77°; fault slip is dominated by left-handed slippage, mainly concentrated within 12 km underground; the maximum sliding amount of joint GPS and InSAR co-seismic data inversion is 3.60 m; the inverted magnitude is approximately Mw 7.42; the causative fault ruptures the surface. Combined with the static Coulomb stress results caused by the same earthquake and the spatial distribution characteristics of the aftershocks around the earthquake, the results show that most of the aftershocks occur near faults, with a small number of aftershocks occurring in the east and west Coulomb stress-increasing zone. There is a certain amount of Coulomb stress accumulation on the east and west sides of the seismic fault, and there may be a high seismic risk.

References:

[1] ZEBKER H A,GOLDSTEIN R M.Topographic Mapping from Interferometric Synthetic Aperture Radar Observations[J].Journal of Geophysical Research:Solid Earth,1986,91(B5):4993-4999.
[2] GABRIEL A K,GOLDSTEIN R M,ZEBKER H A.Mapping Small Elevation Changes over Large Areas:Differential Radar Interferometry[J].Journal of Geophysical Research:Solid Earth,1989,94(B7):9183-9191.
[3] 郭汝梦,杨浩哲,汤雄伟,等.卫星大地测量成像地震周期形变研究综述[J].武汉大学学报(信息科学版),2022,47(6):799-806.
GUO Ru-meng,YANG Hao-zhe,TANG Xiong-wei,et al.A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J].Geomatics and Information Science of Wuhan University,2022,47(6):799-806.
[4] MASSONNET D,ROSSI M,CARMONA C,et al.The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J].Nature,1993,364:138-142.
[5] 季灵运,刘传金,徐 晶,等.九寨沟Ms 7.0地震的InSAR观测及发震构造分析[J].地球物理学报,2017,60(10):4069-4082.
JI Ling-yun,LIU Chuan-jin,XU Jing,et al.InSAR Observation and Inversion of the Seismogenic Fault for the 2017 Jiuzhaigou Ms 7.0 Earthquake in China[J].Chinese Journal of Geophysics,2017,60(10):4069-4082.
[6] 康 帅,刘传金,朱良玉,等.基于升降轨Sentinel-1 SAR数据研究2020年新疆于田Ms 6.4地震震源机制[J].地震,2021,41(2):80-91.
KANG Shuai,LIU Chuan-jin,ZHU Liang-yu,et al.The 2020 Ms 6.4 Earthquake in Yutian,Xinjiang Ba-sed on the Ascending and Descending Sentinel-1 SAR Data[J].Earthquake,2021,41(2):80-91.
[7] 单新建,屈春燕,宋小刚,等.汶川Ms 8.0级地震InSAR同震形变场观测与研究[J].地球物理学报,2009,52(2):496-504.
SHAN Xin-jian,QU Chun-yan,SONG Xiao-gang,et al.Coseismic Surface Deformation Caused by the Wenchuan Ms 8.0 Earthquake from InSAR Data Analysis[J].Chinese Journal of Geophysics,2009,52(2):496-504.
[8] 徐晓雪,季灵运,朱良玉,等.漾濞Ms 6.4地震同震形变特征及发震构造探讨[J].地震地质,2021,43(4):771-789.
XU Xiao-xue,JI Ling-yun,ZHU Liang-yu,et al.The Co-seismic Deformation Characteristics and Seismo-genic Structure of the Yangbi Ms 6.4 Earthquake[J].Seismology and Geology,2021,43(4):771-789.
[9] 潘家伟,白明坤,李 超,等.2021年5月22日青海玛多Ms 7.4地震地表破裂带及发震构造[J].地质学报,2021,95(6):1655-1670.
PAN Jia-wei,BAI Ming-kun,LI Chao,et al.Cosei-smic Surface Rupture and Seismogenic Structure of the 2021-05-22 Maduo(Qinghai)Ms 7.4 Earthquake[J].Acta Geologica Sinica,2021,95(6):1655-1670.
[10] 李智敏,李文巧,李 涛,等.2021年5月22日青海玛多Ms 7.4地震的发震构造和地表破裂初步调查[J].地震地质,2021,43(3):722-737.
LI Zhi-min,LI Wen-qiao,LI Tao,et al.Seismogenic Fault and Coseismic Surface Deformation of the Ma-duo Ms 7.4 Earthquake in Qinghai,China:A Quick Report [J].Seismology and Geology,2021,43(3):722-737.
[11] 盖海龙,姚生海,杨丽萍,等.青海玛多“5·22” Ms 7.4级地震的同震地表破裂特征、成因及意义[J].地质力学学报,2021,27(6):899-912.
GAI Hai-long,YAO Sheng-hai,YANG Li-ping,et al.Characteristics and Causes of Coseismic Surface Rupture Triggered by the “5·22” Ms 7.4 Earthquake in Maduo,Qinghai,and Their Significance[J].Journal of Geomechanics,2021,27(6):899-912.
[12] CHEN H,QU C Y,ZHAO D Z,et al.Rupture Kinematics and Coseismic Slip Model of the 2021 Mw 7.3 Maduo(China)Earthquake:Implications for the Sei-smic Hazard of the Kunlun Fault[J].Remote Sensing,2021,13(16):3327.
[13] XU L,CHEN Q,ZHAO J J,et al.An Integrated Approach for Mapping Three-dimensional Coseismic Displacement Fields from Sentinel-1 TOPS Data Based on DInSAR,POT,MAI and BOI Techniques:Application to the 2021 Mw 7.4 Maduo Earthquake[J].Remote Sensing,2021,13(23):4847.
[14] 李志才,丁开华,张 鹏,等.GNSS观测的2021年青海玛多地震(Mw 7.4)同震形变及其滑动分布[J].武汉大学学报(信息科学版),2021,46(10):1489-1497.
LI Zhi-cai,DING Kai-hua,ZHANG Peng,et al.Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Maduo Earthquake from GNSS Observation[J].Geomatics and Information Science of Wuhan University,2021,46(10):1489-1497.
[15] 华 俊,赵德政,单新建,等.2021年青海玛多Mw 7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J].地震地质,2021,43(3):677-691.
HUA Jun,ZHAO De-zheng,SHAN Xin-jian,et al.Coseismic Deformation Field,Slip Distribution and Coulomb Stress Disturbance of the 2021 Mw 7.3 Maduo Earthquake Using Sentinel-1 InSAR Observations[J].Seismology and Geology,2021,43(3):677-691.
[16] 杨君妍,孙文科,洪顺英,等.2021年青海玛多7.4级地震的同震变形分析[J].地球物理学报,2021,64(8):2671-2683.
YANG Jun-yan,SUN Wen-ke,HONG Shun-ying,et al.Coseismic Deformation Analysis of the 2021 Qinghai Maduo M 7.4 Earthquake[J].Chinese Journal of Geophysics,2021,64(8):2671-2683.
[17] LI H X,ZHENG R,ZOU R.Coseismic Slip Distribution of the 2021 Mw 7.44 Maduo,Qinghai Earthquake Estimated from InSAR and GPS Measurements[J].Journal of Earth Science,2022,33(4):885-891.
[18] 邓起东,程绍平,马 冀,等.青藏高原地震活动特征及当前地震活动形势[J].地球物理学报,2014,57(7):2025-2042.
DENG Qi-dong,CHENG Shao-ping,MA Ji,et al.Seismic Activities and Earthquake Potential in the Tibetan Plateau[J].Chinese Journal of Geophysics,2014,57(7):2025-2042.
[19] 张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学:D辑,地球科学,2003,33(增1):12-20.
ZHANG Pei-zhen,DENG Qi-dong,ZHANG Guo-min,et al.Active Tectonic Blocks and Earthquakes in the Continent of China[J].Science in China:Series D,Earth Sciences,2003,33(S1):12-20.
[20] 陈长云,任金卫,孟国杰,等.巴颜喀拉块体东部活动块体的划分、形变特征及构造意义[J].地球物理学报,2013,56(12):4125-4141.
CHEN Chang-yun,REN Jin-wei,MENG Guo-jie,et al.Division,Deformation and Tectonic Implication of Active Blocks in the Eastern Segment of Bayan Har Block[J].Chinese Journal of Geophysics,2013,56(12):4125-4141.
[21] 周慧芳,张景发,胡乐银,等.青海玉树地震的InSAR数据同震形变场模拟与参数反演分析[J].地球信息科学学报,2011,13(3):418-423.
ZHOU Hui-fang,ZHANG Jing-fa,HU Le-yin,et al.Co-seismic Deformation Field and Parameters Inversion of the Yushu Earthquake from InSAR[J].Journal of Geo-information Science,2011,13(3):418-423.
[22] 王家庆,单新建,张国宏,等.2017 年九寨沟 Ms 7.0 地震InSAR同震形变场与断层滑动分布反演[J].华北地震科学,2018,36(2):1-7.
WANG Jia-qing,SHAN Xin-jian,ZHANG Guo-hong,et al.Fault Slip Distribution Inversion and Co-seismic Deformation of the 2017 Jiuzhaigou Ms 7.0 Earthquake Based on InSAR[J].North China Seismic Sciences,2018,36(2):1-7.
[23] 王未来,房立华,吴建平,等.2021年青海玛多Ms 7.4地震序列精定位研究[J].中国科学:地球科学,2021,51(7):1193-1202.
WANG Wei-lai,FANG Li-hua,WU Jian-ping,et al.Aftershock Sequence Relocation of the 2021 Ms 7.4 Maduo Earthquake,Qinghai,China[J].Science China:Earth Sciences,2021,51(7):1193-1202.
[24] MASSONNET D,FEIGL K L.Radar Interferometry and Its Application to Changes in the Earth's Surface[J].Reviews of Geophysics,1998,36(4):441-500.
[25] WRIGHT T J,PARSONS B E,LU Z.Toward Mapping Surface Deformation in Three Dimensions Using InSAR[J].Geophysical Research Letters,2004,31(1):169-178.
[26] 舒 宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003.
SHU Ning.Principle of Radar Image Interferometry[M].Wuhan:Wuhan University Press,2003.
[27] PRITCHARD M E,SIMONS M,ROSEN P A,et al.Co-seismic Slip from the 1995 July 30 Mw 8.1 Antofagasta,Chile,Earthquake as Constrained by InSAR and GPS Observations[J].Geophysical Journal International,2002,150(2):362-376.
[28] 李永生,冯万鹏,张景发,等.2014年美国加州纳帕Mw 6.1地震断层参数的Sentinel-1A InSAR反演[J].地球物理学报,2015,58(7):2339-2349.
LI Yong-sheng,FENG Wan-peng,ZHANG Jing-fa,et al.Co-seismic Slip of the 2014 Mw 6.1 Napa,California Earthquake Revealed by Sentinel-1A InSAR[J].Chinese Journal of Geophysics,2015,58(7):2339-2349.
[29] SONG C,YU C,LI Z,et al.Coseismic Slip Distribution of the 2019 Mw 7.5 New Ireland Earthquake from the Integration of Multiple Remote Sensing Techniques[J].Remote Sensing,2019,11(23):2767.
[30] 季灵运,朱良玉,刘传金,等.InSAR同震形变场及其在震源参数确定中的应用研究进展[J].地球科学与环境学报,2021,43(3):604-620.
JI Ling-yun,ZHU Liang-yu,LIU Chuan-jin,et al.Review on InSAR-derived Coseismic Deformation and the Determination of Earthquake Source Parameters[J].Journal of Earth Sciences and Environment,2021,43(3):604-620.
[31] WANG R J,DIAO F Q,HOECHNER A.SDM:A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Gedmetry[C]∥EGU.EGU General Assembly Conference.Vienna:EGU,2013:2411.
[32] WANG R J,PAROLAI S,ZSCHAU J,et al.The 2011 Mw 9.0 Tohoku Earthquake:Comparison of GPS and Strong-motion Data[J].Bulletin of the Seismological Society of America,2013,103:1336-1347.
[33] 赵 强,王双绪,蒋锋云,等.利用InSAR技术研究2016年青海门源Mw 5.9地震同震形变场及断层滑动分布[J].地震,2017,37(2):95-105.
ZHAO Qiang,WANG Shuang-xu,JIANG Feng-yun,et al.Co-seismic Deformation Field and Fault Slip Distribution of the 2016 Qinghai Menyuan Mw 5.9 Earthquake from InSAR Measurement[J].Earthquake,2017,37(2):95-105.
[34] OKADA Y.Internal Deformation Due to Shear and Tensile Faults in a Half-space[J].Bulletin of the Seismological Society of America,1992,82(2):1018-1040.
[35] KING G C P,STEIN R S,LIN J.Static Stress Changes and the Triggering of Earthquakes[J].Bulletin of the Seismological Society of America,1994,84(3):935-953.
[36] LIN J,STEIN R S.Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction Between the Southern San Andreas and Nearby Thrust and Strike-slip Faults[J].Journal of Geophysical Research:Solid Earth,2004,109(B2):B002607.
[37] TODA S,STEIN R S,RICHARDS-DINGER K,et al.Forecasting the Evolution of Seismicity in Southern California:Animations Built on Earthquake Stress Transfer[J].Journal of Geophysical Research:Solid Earth,2005,110(B5):B003415.

Memo

Memo:
-
Last Update: 2022-11-25