|Table of Contents|

Numerical Simulation of Seismic Wave in VTI Media Based on Orthogonal Body-fitted Grid(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第02期
Page:
168-178
Research Field:
应用地球物理
Publishing date:

Info

Title:
Numerical Simulation of Seismic Wave in VTI Media Based on Orthogonal Body-fitted Grid
Author(s):
LIU Zhi-qiang LI Gang-zhu* HUANG Lei XU Lei LI Wen-bao
(Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China)
Keywords:
orthogonal body-fitted grid VTI media seismic wave numerical simulation irregular surface free boundary condition finite difference method stepped grid
PACS:
P315.3+1
DOI:
10.19814/j.jese.2022.10024
Abstract:
In order to solve the complex coordinate transformation and interpolation operations when the regular grid finite difference method deals with the free boundary conditions of irregular surface, as well as the false scattered waves generated by the stepped discrete approximation of irregular surface, the orthogonal body-fitted gird generation technique in computational fluid mechanics was introduced into the mesh generation of VTI media under irregular surface. The DRP/opt MacCormack finite difference method based on the collocated grid was used to simulate seismic waves in VTI media under the irregular surface. The orthogonality of the grid eliminates the need for complex coordinate transformation and interpolation operations in the implementation of free boundary conditions. Numerical examples show that the proposed grid generation method can effectively eliminate the false scattered waves generated by the stepped grid, thus improve the accuracy of seismic numerical simulation in VTI media under the irregular surface.

References:

[1] 孙 辉,岳玉波,李 猛.基于Born散射理论的二维黏声介质高斯波束正演[J].地球物理学报,2021,64(2):637-644.
SUN Hui,YUE Yu-bo,LI Meng.2D Born Forward Modeling for Visco-acoustic Media Using Gaussian Beam[J].Chinese Journal of Geophysics,2021,64(2):637-644.
[2] YUE Y,SUN H,WU R,et al.Gaussian Beam Born Modeling for Single-scattering Waves in Visco-acoustic Media [J].IEEE Geoscience and Remote Sensing Letters,2021,18(8):1486-1490.
[3] HUANG X G,GREENHALGH S,HAN L,et al.Generalized Effective Biot Theory and Seismic Wave Propagation in Anisotropic Poroviscoelastic Media[J].Journal of Geophysical Research:Solid Earth,2022,127(3):e2021JB023590.
[4] 孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362.
SUN Jian-guo.Methods for Numerical Modeling of Geophysical Fields Under Complex Topographical Conditions:A Critical Review[J].Global Geology,2007,26(3):345-362.
[5] LI X,ZHANG Z,REN Q,et al.Numerical Simulation of Seismic Wave in Elastic and Viscoelastic TTI Me-dia[J].Earthquake Science,2020,33(3):116-129.
[6] PING P,XU Y X,ZHANG Y,et al.Seismic Wave Modeling in Viscoelastic VTI Media Using Spectral Element Method[J].Earthquake Science,2014,27(5):553-565.
[7] LIN B,ZHOU B.Subdomain Chebyshev Spectral Me-thod for 2.5-D Seismic Wave Modelling in VTI Media[C]∥HAO H M,MA J W,ZHAO B L.International Geophysical Conference,Beijing,China.Beijing:Society of Exploration Geophysicists,2018:973-976.
[8] 徐世刚,刘 洋.基于优化有限差分和混合吸收边界条件的三维VTI介质声波和弹性波数值模拟[J].地球物理学报,2018,61(7):2950-2968.
XU Shi-gang,LIU Yang.3D Acoustic and Elastic VTI Modeling with Optimal Finite-difference Sche-mes and Hybrid Absorbing Boundary Conditions[J].Chinese Journal of Geophysics,2018,61(7):2950-2968.
[9] 张丽艳,李 昂,刘建颖,等.宽方位地震资料方位各向异性处理:以大庆长垣三分量地震数据为例[J].石油地球物理勘探,2020,55(2):292-301,310.
ZHANG Li-yan,LI Ang,LIU Jian-ying,et al.Azimuth Anisotropic Wide-azimuth Seismic Data Processing:A Case Study of Three-component Data from Daqing Placanticline[J].Oil Geophysical Prospecting,2020,55(2):292-301,310.
[10] 高 雪,黄建平,李振春,等.时间域黏声VTI介质自适应聚焦束偏移[J].石油地球物理勘探,2021,56(4):771-781.
GAO Xue,HUANG Jian-ping,LI Zhen-chun,et al.Time-domain Adaptive Focused Beam Migration for Viscous,and VTI Media[J].Oil Geophysical Prospecting,2021,56(4):771-781.
[11] 李春梅,彭 才,张 旋,等.叠前深度偏移及储层精细预测技术在钻井轨迹调整中的应用[J].石油地球物理勘探,2022,57(3):656-665.
LI Chun-mei,PENG Cai,ZHANG Xuan,et al.Application of Pre-stack Depth Migration and Fine Reservoir Prediction Technology in Well Trajectory Adjustment During Drilling[J].Oil Geophysical Prospecting,2022,57(3):656-665.
[12] 刘志强,孙建国,孙 辉,等.基于自适应网格的仿真型有限差分地震波数值模拟[J].地球物理学报,2016,59(12):4654-4665.
LIU Zhi-qiang,SUN Jian-guo,SUN Hui,et al.Mimetic Finite-difference Numerical Simulation of Seismic Wave Based on the Adaptive Grid[J].Chinese Journal of Geophysics,2016,59(12):4654-4665.
[13] 彭更新,刘 威,郭念民,等.基于时空域交错网格有限差分法的应力速度声波方程数值模拟[J].石油物探,2022,61(1):156-165,173.
PENG Geng-xin,LIU Wei,GUO Nian-min,et al.A Time-space Domain Dispersion-relationship-based Staggered-grid Finite-difference Scheme Modeling the St-ress-velocity Acoustic Wave Equation[J].Geophysical Prospecting for Petroleum,2022,61(1):156-165,173.
[14] 王 静,刘 洋,周泓宇.时间-空间高阶精度矩形交错网格隐式有限差分声波正演模拟[J].地球物理学报,2023,66(1):368-382.
WANG Jing,LIU Yang,ZHOU Hong-yu.Temporal and Spatial High-order Accuracy Implicit Finite-di-fference Method for Modeling Acoustic Wave on Rectangular Staggered-grid[J].Chinese Journal of Geophys,2023,66(1):368-382.
[15] HAYASHI K,BURNS D R,TOKSÖZ M N.Discontinuous-grid Finite-difference Seismic Modeling Including Surface Topography[J].Bulletin of the Seismological Society of America,2001,91(6):1750-1764.
[16] OPRAL I,ZAHRADNIK J.Elastic Finite-difference Method for Irregular Grids[J].Geophysics,1999,64(1):240-250.
[17] TESSMER E,KOSLOFF D,BEHLE A.Elastic Wave Propagation Simulation in the Presence of Surface Topography[J].Geophysical Journal International,1992,108(2):621-632.
[18] HESTHOLM S,RUUD B.2D Finite-difference Elastic Wave Modelling Including Surface Topography[J].Geophysical Prospecting,1994,42(5):371-390.
[19] 董良国.复杂地表条件下地震波传播数值模拟[J].勘探地球物理进展,2005,28(3):187-194.
DONG Liang-guo.Numerical Simulation of Seismic Wave Propagation Under Complex near Surface Conditions[J].Progress in Exploration Geophysics,2005,28(3):187-194.
[20] TARRASS I,GIRAUD L,THORE P.New Curvili-near Scheme for Elastic Wave Propagation in Presence of Curved Topography[J].Geophysical Prospecting,2011,59(5):889-906.
[21] LAN H Q,ZHANG Z J.Comparative Study of the Free-surface Boundary Condition in Two-dimensional Finite-Difference Elastic Wave Field Simulation[J].Journal of Geophysics and Engineering,2011,8(2):275-286.
[22] SUN Y C,ZHANG W,CHEN X F.Seismic-wave Mo-deling in the Presence of Surface Topography in 2D General Anisotropic Media by a Curvilinear Grid Finite-difference Method[J].Bulletin of the Seismological Society of America,2016,106(3):1036-1054.
[23] 丘 磊,田 钢,石战结,等.起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J].浙江大学学报(工学版),2012,46(10):1923-1931.
QIU Lei,TIAN Gang,SHI Zhan-jie,et al.Finite-difference Method for Seismic Wave Numerical Simulation in Presence of Topography:In Generally Orthogonal Curvilinear Coordinate System[J].Journal of Zhejiang University(Engineering Science),2012,46(10):1923-1931.
[24] 李庆洋,黄建平,李振春,等.起伏地表贴体全交错网格仿真型有限差分正演模拟[J].石油地球物理勘探,2015,50(4):633-642.
LI Qing-yang,HUANG Jian-ping,LI Zhen-chun,et al.Undulating Surface Body-fitted Grid Seismic Modeling Based on Fully Staggered-grid Mimetic Finite Difference[J].Oil Geophysical Prospecting,2015,50(4):633-642.
[25] 刘志强.复杂地质条件下基于正交曲线网格的地震波数值模拟研究[D].长春:吉林大学,2017.
LIU Zhi-qiang.Study on Seismic Wave Simulation Ba-sed on Orthogonal Curvilinear Mesh Under the Complex Geological Conditions[D].Changchun:Jilin University,2017.
[26] 刘志强,孙建国,孙 辉,等.曲线坐标系下的完全匹配层吸收边界条件[J].吉林大学学报(地球科学版),2017,47(6):1875-1884.
LIU Zhi-qiang,SUN Jian-guo,SUN Hui,et al.A Perfectly Matched Layer Absorbing Boundary Condition Under the Curvilinear Coordinate System[J].Journal of Jilin University(Earth Science Edition),2017,47(6):1875-1884.
[27] ZHANG Y X,JIA Y F,WANG S S Y.2D Nearly Or-thogonal Mesh Generation with Controls on Distortion Function[J].Journal of Computational Physics,2006,218(2):549-571.
[28] HIXON R,TURKEL E.Compact Implicit MacCor-mack-type Schemes with High Accuracy[J].Journal of Computational Physics,2000,158(1):51-70.
[29] BOGEY C,BAILLY C.A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations[J].Journal of Computational Physics,2004,194(1):194-214.
[30] 刘志强,黄 磊,李钢柱,等.崎岖海底对下伏水平地层反射波特征的影响[J].吉林大学学报(地球科学版),2023,53(1):274-282.
LIU Zhi-qiang,HUANG Lei,LI Gang-zhu,et al.Effect of Rugged Seabed on Reflection Wave Characters of Underlying Horizontal Strata[J].Journal of Jilin University(Earth Science Edition),2023,53(1):274-282.
[31] 韩复兴,王若雯,孙章庆,等.地震声波数值模拟中人工边界条件的差别与组合[J].吉林大学学报(地球科学版),2022,52(1):261-269.
HAN Fu-xing,WANG Ruo-wen,SUN Zhang-qing,et al.Difference and Combination of Artificial Boun-dary Conditions in Seismic Acoustic Numerical Simulation[J].Journal of Jilin University(Earth Science Edition),2022,52(1):261-269.
[32] 吴 悠,吴国忱,李青阳,等.频率-空间域非均质声波有限差分模拟[J].石油地球物理勘探,2022,57(2):342-356.
WU You,WU Guo-chen,LI Qing-yang,el al.A Fini-te-difference Scheme in Frequency-space Domain to Solve Heterogeneous Acoustic Wave Equation[J].Oil Geophysical Prospecting,2022,57(2):342-356.
[33] MARTIN R,KOMATITSCH D.An Unsplit Convolutional Perfectly Matched Layer Technique Improved at Grazing Incidence for the Viscoelastic Wave Equation[J].Geophysical Journal International,2009,179(1):333-344.

Memo

Memo:
-
Last Update: 2023-05-20