[1] 孙 辉,岳玉波,李 猛.基于Born散射理论的二维黏声介质高斯波束正演[J].地球物理学报,2021,64(2):637-644.
SUN Hui,YUE Yu-bo,LI Meng.2D Born Forward Modeling for Visco-acoustic Media Using Gaussian Beam[J].Chinese Journal of Geophysics,2021,64(2):637-644.
[2] YUE Y,SUN H,WU R,et al.Gaussian Beam Born Modeling for Single-scattering Waves in Visco-acoustic Media [J].IEEE Geoscience and Remote Sensing Letters,2021,18(8):1486-1490.
[3] HUANG X G,GREENHALGH S,HAN L,et al.Generalized Effective Biot Theory and Seismic Wave Propagation in Anisotropic Poroviscoelastic Media[J].Journal of Geophysical Research:Solid Earth,2022,127(3):e2021JB023590.
[4] 孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362.
SUN Jian-guo.Methods for Numerical Modeling of Geophysical Fields Under Complex Topographical Conditions:A Critical Review[J].Global Geology,2007,26(3):345-362.
[5] LI X,ZHANG Z,REN Q,et al.Numerical Simulation of Seismic Wave in Elastic and Viscoelastic TTI Me-dia[J].Earthquake Science,2020,33(3):116-129.
[6] PING P,XU Y X,ZHANG Y,et al.Seismic Wave Modeling in Viscoelastic VTI Media Using Spectral Element Method[J].Earthquake Science,2014,27(5):553-565.
[7] LIN B,ZHOU B.Subdomain Chebyshev Spectral Me-thod for 2.5-D Seismic Wave Modelling in VTI Media[C]∥HAO H M,MA J W,ZHAO B L.International Geophysical Conference,Beijing,China.Beijing:Society of Exploration Geophysicists,2018:973-976.
[8] 徐世刚,刘 洋.基于优化有限差分和混合吸收边界条件的三维VTI介质声波和弹性波数值模拟[J].地球物理学报,2018,61(7):2950-2968.
XU Shi-gang,LIU Yang.3D Acoustic and Elastic VTI Modeling with Optimal Finite-difference Sche-mes and Hybrid Absorbing Boundary Conditions[J].Chinese Journal of Geophysics,2018,61(7):2950-2968.
[9] 张丽艳,李 昂,刘建颖,等.宽方位地震资料方位各向异性处理:以大庆长垣三分量地震数据为例[J].石油地球物理勘探,2020,55(2):292-301,310.
ZHANG Li-yan,LI Ang,LIU Jian-ying,et al.Azimuth Anisotropic Wide-azimuth Seismic Data Processing:A Case Study of Three-component Data from Daqing Placanticline[J].Oil Geophysical Prospecting,2020,55(2):292-301,310.
[10] 高 雪,黄建平,李振春,等.时间域黏声VTI介质自适应聚焦束偏移[J].石油地球物理勘探,2021,56(4):771-781.
GAO Xue,HUANG Jian-ping,LI Zhen-chun,et al.Time-domain Adaptive Focused Beam Migration for Viscous,and VTI Media[J].Oil Geophysical Prospecting,2021,56(4):771-781.
[11] 李春梅,彭 才,张 旋,等.叠前深度偏移及储层精细预测技术在钻井轨迹调整中的应用[J].石油地球物理勘探,2022,57(3):656-665.
LI Chun-mei,PENG Cai,ZHANG Xuan,et al.Application of Pre-stack Depth Migration and Fine Reservoir Prediction Technology in Well Trajectory Adjustment During Drilling[J].Oil Geophysical Prospecting,2022,57(3):656-665.
[12] 刘志强,孙建国,孙 辉,等.基于自适应网格的仿真型有限差分地震波数值模拟[J].地球物理学报,2016,59(12):4654-4665.
LIU Zhi-qiang,SUN Jian-guo,SUN Hui,et al.Mimetic Finite-difference Numerical Simulation of Seismic Wave Based on the Adaptive Grid[J].Chinese Journal of Geophysics,2016,59(12):4654-4665.
[13] 彭更新,刘 威,郭念民,等.基于时空域交错网格有限差分法的应力速度声波方程数值模拟[J].石油物探,2022,61(1):156-165,173.
PENG Geng-xin,LIU Wei,GUO Nian-min,et al.A Time-space Domain Dispersion-relationship-based Staggered-grid Finite-difference Scheme Modeling the St-ress-velocity Acoustic Wave Equation[J].Geophysical Prospecting for Petroleum,2022,61(1):156-165,173.
[14] 王 静,刘 洋,周泓宇.时间-空间高阶精度矩形交错网格隐式有限差分声波正演模拟[J].地球物理学报,2023,66(1):368-382.
WANG Jing,LIU Yang,ZHOU Hong-yu.Temporal and Spatial High-order Accuracy Implicit Finite-di-fference Method for Modeling Acoustic Wave on Rectangular Staggered-grid[J].Chinese Journal of Geophys,2023,66(1):368-382.
[15] HAYASHI K,BURNS D R,TOKSÖZ M N.Discontinuous-grid Finite-difference Seismic Modeling Including Surface Topography[J].Bulletin of the Seismological Society of America,2001,91(6):1750-1764.
[16] OPRAL I,ZAHRADNIK J.Elastic Finite-difference Method for Irregular Grids[J].Geophysics,1999,64(1):240-250.
[17] TESSMER E,KOSLOFF D,BEHLE A.Elastic Wave Propagation Simulation in the Presence of Surface Topography[J].Geophysical Journal International,1992,108(2):621-632.
[18] HESTHOLM S,RUUD B.2D Finite-difference Elastic Wave Modelling Including Surface Topography[J].Geophysical Prospecting,1994,42(5):371-390.
[19] 董良国.复杂地表条件下地震波传播数值模拟[J].勘探地球物理进展,2005,28(3):187-194.
DONG Liang-guo.Numerical Simulation of Seismic Wave Propagation Under Complex near Surface Conditions[J].Progress in Exploration Geophysics,2005,28(3):187-194.
[20] TARRASS I,GIRAUD L,THORE P.New Curvili-near Scheme for Elastic Wave Propagation in Presence of Curved Topography[J].Geophysical Prospecting,2011,59(5):889-906.
[21] LAN H Q,ZHANG Z J.Comparative Study of the Free-surface Boundary Condition in Two-dimensional Finite-Difference Elastic Wave Field Simulation[J].Journal of Geophysics and Engineering,2011,8(2):275-286.
[22] SUN Y C,ZHANG W,CHEN X F.Seismic-wave Mo-deling in the Presence of Surface Topography in 2D General Anisotropic Media by a Curvilinear Grid Finite-difference Method[J].Bulletin of the Seismological Society of America,2016,106(3):1036-1054.
[23] 丘 磊,田 钢,石战结,等.起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J].浙江大学学报(工学版),2012,46(10):1923-1931.
QIU Lei,TIAN Gang,SHI Zhan-jie,et al.Finite-difference Method for Seismic Wave Numerical Simulation in Presence of Topography:In Generally Orthogonal Curvilinear Coordinate System[J].Journal of Zhejiang University(Engineering Science),2012,46(10):1923-1931.
[24] 李庆洋,黄建平,李振春,等.起伏地表贴体全交错网格仿真型有限差分正演模拟[J].石油地球物理勘探,2015,50(4):633-642.
LI Qing-yang,HUANG Jian-ping,LI Zhen-chun,et al.Undulating Surface Body-fitted Grid Seismic Modeling Based on Fully Staggered-grid Mimetic Finite Difference[J].Oil Geophysical Prospecting,2015,50(4):633-642.
[25] 刘志强.复杂地质条件下基于正交曲线网格的地震波数值模拟研究[D].长春:吉林大学,2017.
LIU Zhi-qiang.Study on Seismic Wave Simulation Ba-sed on Orthogonal Curvilinear Mesh Under the Complex Geological Conditions[D].Changchun:Jilin University,2017.
[26] 刘志强,孙建国,孙 辉,等.曲线坐标系下的完全匹配层吸收边界条件[J].吉林大学学报(地球科学版),2017,47(6):1875-1884.
LIU Zhi-qiang,SUN Jian-guo,SUN Hui,et al.A Perfectly Matched Layer Absorbing Boundary Condition Under the Curvilinear Coordinate System[J].Journal of Jilin University(Earth Science Edition),2017,47(6):1875-1884.
[27] ZHANG Y X,JIA Y F,WANG S S Y.2D Nearly Or-thogonal Mesh Generation with Controls on Distortion Function[J].Journal of Computational Physics,2006,218(2):549-571.
[28] HIXON R,TURKEL E.Compact Implicit MacCor-mack-type Schemes with High Accuracy[J].Journal of Computational Physics,2000,158(1):51-70.
[29] BOGEY C,BAILLY C.A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations[J].Journal of Computational Physics,2004,194(1):194-214.
[30] 刘志强,黄 磊,李钢柱,等.崎岖海底对下伏水平地层反射波特征的影响[J].吉林大学学报(地球科学版),2023,53(1):274-282.
LIU Zhi-qiang,HUANG Lei,LI Gang-zhu,et al.Effect of Rugged Seabed on Reflection Wave Characters of Underlying Horizontal Strata[J].Journal of Jilin University(Earth Science Edition),2023,53(1):274-282.
[31] 韩复兴,王若雯,孙章庆,等.地震声波数值模拟中人工边界条件的差别与组合[J].吉林大学学报(地球科学版),2022,52(1):261-269.
HAN Fu-xing,WANG Ruo-wen,SUN Zhang-qing,et al.Difference and Combination of Artificial Boun-dary Conditions in Seismic Acoustic Numerical Simulation[J].Journal of Jilin University(Earth Science Edition),2022,52(1):261-269.
[32] 吴 悠,吴国忱,李青阳,等.频率-空间域非均质声波有限差分模拟[J].石油地球物理勘探,2022,57(2):342-356.
WU You,WU Guo-chen,LI Qing-yang,el al.A Fini-te-difference Scheme in Frequency-space Domain to Solve Heterogeneous Acoustic Wave Equation[J].Oil Geophysical Prospecting,2022,57(2):342-356.
[33] MARTIN R,KOMATITSCH D.An Unsplit Convolutional Perfectly Matched Layer Technique Improved at Grazing Incidence for the Viscoelastic Wave Equation[J].Geophysical Journal International,2009,179(1):333-344.