|Table of Contents|

Geochemistry and Li-rich Characteristics of Mudstones from Upper Carboniferous Benxi Formation in Gongyi Area, the Western Henan, China and Their Controlling Factors(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第02期
Page:
208-226
Research Field:
基础地质与矿床地质
Publishing date:

Info

Title:
Geochemistry and Li-rich Characteristics of Mudstones from Upper Carboniferous Benxi Formation in Gongyi Area, the Western Henan, China and Their Controlling Factors
Author(s):
ZHANG Ying-li1 CHEN Lei1 WANG Kun-ming1 WANG Gang1 GUO Xian-qing2
(1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. Chinese Academy of Geological Sciences, Beijing 100037, China)
Keywords:
geochemistry mudstone clastic provenance lithium enrichment Benxi Formation Upper Carboniferous lagoon Henan
PACS:
P59; P512.2
DOI:
10.19814/j.jese.2022.11014
Abstract:
The sedimentary sequences and geochemistry characteristics of mudstone contain much geological information and are widely used in sedimentology and provenance analysis. The Upper Carboniferous Benxi Formation in Gongyi area, the western Henan is rich in lithium resources. However, the source rocks, deposition conditions, and other controlling factors of lithium resouces and the occurrence minerals are not clear. Based on the field outcrop and the characteristics of major, trace and rare earth elements, the comprehensive analysis of Upper Carboniferous Benxi Formation in the western Henan were carried out. The lithium enrichment characteristics of Benxi Formation was illustrated, the source rocks, weathering degree, sediment sorting and recycling, paleoenvironment of Benxi Formation were discussed, and then the controlling factors of lithium enrichment were analyzed. The results show that lithium is mainly concentrated in mudstone with the average content of 1 487×10-6, and the content of lithium in bauxite is low; Benxi Formation is mainly composed of fine-grained sediments, and the sedimentary sequences indicate that the sediments are deposited in lagoon; B/Ga ratio indicates that the sea water is brackish during the sedimentation; Sr/Cu ratio and other parameters show that the sediments are deposited in a warm humid-dry hot climate under anoxic conditions; the different diagrams of trace and rare earth elements in Benxi Formation indicate that the source rocks are mainly felsic igneous rock, and secondary limestones and mudstones; the chemical index of alteration and weathering index of parker parameters and related diagrams show that the source rocks have undergone strong weathering and sedimentary recycling. Lithium enrichment in Benxi Formation is closely related to the content of clay minerals(such as kaolinite and chlorite). Source rocks provide materials for lithium enrichment, and sedimentary characteristics such as sedimentary recycling processes and sedimentary environment, affect the enrichment of lithium resources.

References:

[1] 刘丽君,王登红,刘喜方,等.国内外锂矿主要类型、分布特点及勘查开发现状[J].中国地质,2017,44(2):263-278.
LIU Li-jun,WANG Deng-hong,LIU Xi-fang,et al.The Main Types,Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine[J].Geology in China,2017,44(2):263-278.
[2] BOWELL R J,LAGOS L,DE LOS HOYOS C R,et al.Classification and Characteristics of Natural Li-thium Resources[J].Elements,2020,16(4):259-264.
[3] 赵元艺,符家骏,李 运.塞尔维亚贾达尔盆地超大型锂硼矿床[J].地质论评,2015,61(1):34-44.
ZHAO Yuan-yi,FU Jia-jun,LI Yun.Super Large Li-thium and Boron Deposit in Jadar Basin,Serbia[J].Geological Review,2015,61(1):34-44.
[4] 张英利,陈 雷,王坤明,等.沉积型锂资源成矿作用特征[J].矿床地质,2022,41(5):1073-1092.
ZHANG Ying-li,CHEN Lei,WANG Kun-ming,et al.Metallogenic Characteristics of Sedimentary Li-thium Resources[J].Mineral Deposits,2022,41(5):1073-1092.
[5] 温汉捷,罗重光,杜胜江,等.碳酸盐黏土型锂资源的发现及意义[J].科学通报,2020,65(1):53-59.
WEN Han-jie,LUO Chong-guang,DU Sheng-jiang,et al.Carbonate-hosted Clay-type Lithium Deposit and Its Prospecting Significance[J].Chinese Science Bulletin,2020,65(1):53-59.
[6] 崔 燚,温汉捷,于文修,等.滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J].岩石学报,2022,38(7):2080-2094.
CUI Yi,WEN Han-jie,YU Wen-xiu,et al.Study on the Occurrence State and Enrichment Mechanism of Lithium in Lithium-rich Clay Series of the Daoshitou Formation of Lower Permian in Central Yunnan[J].Acta Petrologica Sinica,2022,38(7):2080-2094.
[7] 姚双秋,庞崇进,温淑女,等.桂西上二叠统合山组富锂黏土岩的发现及意义[J].大地构造与成矿学,2021,45(5):951-962.
YAO Shuang-qiu,PANG Chong-jin,WEN Shu-nv,et al.Li-rich Claystone in the Upper Permian Heshan Formation in Western Guangxi and Its Prospecting Significance[J].Geotectonica et Metallogenia,2021,45(5):951-962.
[8] 钟海仁,孙 艳,杨岳清,等.铝土矿(岩)型锂资源及其开发利用潜力[J].矿床地质,2019,38(4):898-916.
ZHONG Hai-ren,SUN Yan,YANG Yue-qing,et al.Bauxite(Aluminum)-type Lithium Resources and Analysis of Its Development and Utilization Potential[J].Mineral Deposits,2019,38(4):898-916.
[9] 梁 涛,卢 仁,白凤军,等.豫西陕县—渑池—新安—济源铝土矿稀有、稀散、稀土元素的矿化[J].地质论评,2013,59(增):511-512.
LIANG Tao,LU Ren,BAI Feng-jun,et al.Mineralization of Rare,Scattered,and Rare Earth Elements in Bauxite Deposits in Shanxian-Mianchi-Xin'an-Jiyuan,Western Henan Province[J].Geological Review,2013,59(S):511-512.
[10] 温静静,梁 涛,卢 仁,等.河南省嵩箕地区铝土矿Li、Ti、Zr、Ga、Nb和LREE的矿化分析[J].矿产与地质,2016,30(2):216-222.
WEN Jing-jing,LIANG Tao,LU Ren,et al.Mineralization of Li,Ti,Zr,Ga,Nb and LREE of Bauxite Deposits in Songji Area of Henan[J].Mineral Resources and Geology,2016,30(2):216-222.
[11] 王 莉,梁 涛,卢 仁,等.河南汝州—宝丰—鲁山地区铝土矿Li、Ti、Ga、Zr、Nb和LREE的矿化特征[J].矿产勘查,2017,8(4):591-598.
WANG Li,LIANG Tao,LU Ren,et al.Mineralization Characteristics of Li,Ti,Ga,Zr,Nb and LREE in Bauxite Deposit in Ruzhou-Baofeng-Lushan Area,Henan[J].Mineral Exploration,2017,8(4):591-598.
[12] 王滑冰,白德胜,安 颖,等.豫北焦作地区本溪组锂元素分布及富集特征[J].矿物岩石地球化学通报,2021,40(2):458-469.
WANG Hua-bing,BAI De-sheng,AN Ying,et al.Study on the Distribution and Enrichment Characteri-stics of Lithiumin in the Benxi Formation of the Jiaozuo Area,Northern Henan,China[J].Bulletin of Mi-neralogy,Petrology and Geochemistry,2021,40(2):458-469.
[13] ZHAO L H,LIU X F.Metallogenic and Tectonic Implications of Detrital Zircon U-Pb,Hf Isotopes,and Detrital Rutile Geochemistry of Late Carboniferous Karstic Bauxite on the Southern Margin of the North China Craton[J].Lithos,2019,350/351:105222.
[14] WANG Q F,DENG J,LIU X F,et al.Provenance of Late Carboniferous Bauxite Deposits in the North China Craton:New Constraints on Marginal Arc Construction and Accretion Processes[J].Gondwana Research,2016,38:86-98.
[15] 曹高社,刘凌之,邢 舟,等.河南省巩义地区本溪组铝土矿成矿物质来源:来自碎屑锆石LA-ICP-MS U-Pb年龄的证据[J].河南理工大学学报(自然科学版),2018,37(6):55-65.
CAO Gao-she,LIU Ling-zhi,XING Zhou,et al.Material Sources Analysis of Karstic Bauxite of Benxi Formation in Gongyi Area,Henan Province:Evidences from LA-ICP-MS U-Pb Dating of Detrital Zircons[J].Journal of Henan Polytechnic University(Natural Science),2018,37(6):55-65.
[16] SUN F Y,CAO G S.Provenance of Bauxite and Clay Deposits in the Carboniferous Benxi Formation,Western Henan,China:Constraints from U-Pb Geochronology and Regional Geology[J].Geological Journal,2022,57(8):3090-3100.
[17] YANG D B,YANG H T,SHI J P,et al.Sedimentary Response to the Paleogeographic and Tectonic Evolution of the Southern North China Craton During the Late Paleozoic and Mesozoic[J].Gondwana Research,2017,49:278-295.
[18] 刘学飞,王庆飞,李中明,等.河南铝土矿矿物成因及其演化序列[J].地质与勘探,2012,48(3):449-459.
LIU Xue-fei,WANG Qing-fei,LI Zhong-ming,et al.Mineral Genesis and Evolutionary Sequence of the Bauxite Deposits in Henan Province[J].Geology and Exploration,2012,48(3):449-459.
[19] WANG Q F,LIU X F,YAN C H,et al.Mineralogical and Geochemical Studies of Boron-rich Bauxite Ore Deposits in the Songqi Region,SW Henan,China[J].Ore Geology Reviews,2012,48:258-270.
[20] 施和生,王冠龙,关尹文.豫西铝土矿沉积环境初探[J].沉积学报,1989,7(2):89-97.
SHI He-sheng,WANG Guan-long,GUAN Yin-wen.The Preliminery Study on the Sedimentary Environment of Bauxite Deposits in Western Henan[J].Acta Sedimentologica Sinica,1989,7(2):89-97.
[21] 陈守民,张 璐,胡 斌,等.河南省上石炭统—下二叠统本溪组沉积时期古地理特征[J].古地理学报,2011,13(2):127-138.
CHEN Shou-min,ZHANG Lu,HU Bin,et al.Palaeogeographic Characteristics During the Depositional Period of Upper Carboniferous-Lower Permian Benxi Formation in Henan Province[J].Journal of Palaeogeography,2011,13(2):127-138.
[22] 周云荣,李建全.河南省偃龙铝土矿床晚石炭世古地理特征及其对铝土矿的控矿意义[J].地质与资源,2019,28(3):254-259.
ZHOU Yun-rong,LI Jian-quan.Late Carboniferous Paleogeography of the Yanlong Bauxite Deposit in Henan Province:Ore-controlling Significance[J].Geo-logy and Resources,2019,28(3):254-259.
[23] SINGH A K,CHAKRABORTY P P.Shales of Pa-laeo-Mesoproterozoic Vindhyan Basin,Central India:Insight into Sedimentation Dynamics of Proterozoic Shelf[J].Geological Magazine,2022,159(2):247-268.
[24] CULLERS R L.Implications of Elemental Concentrations for Provenance,Redox Conditions,and Metamorphic Studies of Shales and Limestones near Pue-blo,CO,USA[J].Chemical Geology,2002,191(4):305-327.
[25] 常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评,2009,55(1):91-99.
CHANG Hua-jin,CHU Xue-lei,FENG Lian-jun,et al.Redox Sensitive Trace Elements as Paleoenvironments Proxies[J].Geological Review,2009,55(1):91-99.
[26] NESBITT H W,YOUNG G M.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations[J].Geochimica et Cosmochimica Acta,1984,48(7):1523-1534.
[27] 王宗起,闫全人,闫 臻,等.秦岭造山带主要大地构造单元的新划分[J].地质学报,2009,83(11):1527-1546.
WANG Zong-qi,YAN Quan-ren,YAN Zhen,et al.New Division of the Main Tectonic Units of the Qinling Orogenic Belt,Central China[J].Acta Geologica Sinica,2009,83(11):1527-1546.
[28] 第五春荣.华北克拉通南部太古宙大陆地壳的生长和演化[J].岩石学报,2021,37(2):317-340.
DIWU Chun-rong.Crustal Growth and Evolution of Archean Continental Crust in the Southern North China Craton[J].Acta Petrologica Sinica,2021,37(2):317-340.
[29] 赵太平,翟明国,夏 斌,等.熊耳群火山岩锆石SHRIMP年代学研究:对华北克拉通盖层发育初始时间的制约[J].科学通报,2004,49(22):2342-2349.
ZHAO Tai-ping,ZHAI Ming-guo,XIA Bin,et al.Zircon U-Pb SHRIMP Dating for the Volcanic Rocks of the Xiong'er Group:Constraints on the Initial Formation Age of the Cover of the North China Craton[J].Chinese Science Bulletin,2004,49(22):2342-2349.
[30] DONG W C,PANG X C,QU W X,et al.Isotopic Age of the Xiong'er Group Volcanic Rocks and Its Geolo-gical Significance in Western Henan,China[J].Geo-fluids,2022,2022:9113045.
[31] 刘 欢,李怀坤,田 辉,等.豫西汝阳群、洛峪群碎屑锆石年代学特征及其地质意义[J].地质学报,2021,95(8):2436-2452.
LIU Huan,LI Huai-kun,TIAN Hui,et al.Detrital Zircon Geochronological Characteristics of Ruyang and Luoyu Group from Western Henan Province and Its Geological Significance[J].Acta Geologica Sinica,2021,95(8):2436-2452.
[32] LI X Y,LI S Z,WANG T S,et al.Geochemistry and Detrital Zircon Records of the Ruyang-Luoyu Gro-ups,Southern North China Craton:Provenance,Crustal Evolution and Paleo-Mesoproterozoic Tectonic Implications[J].Geoscience Frontiers,2020,11(2):679-696.
[33] ZUO P F,LI Y,CHENG H H,et al.Huge Sedimentary Hiatus in the Southern Margin of the North China Craton from Mid-Mesoproterozoic to Neoproterozoic[J].International Geology Review,2022,64(19):2803-2821.
[34] MILLIKEN K.A Compositional Classification for Grain Assemblages in Fine-grained Sediments and Sedimentary Rocks[J].Journal of Sedimentary Research,2014,84(12):1185-1199.
[35] MATTAUER M,MATTE P H,MALAVIEILLE J,et al.Tectonics of the Qinling Belt:Build-up and Evolution of Eastern Asia[J].Nature,1985,317:496-500.
[36] 河南省地质局.临汝幅 1:200 000地质图说明书[R].北京:全国地质资料馆,1965.
Henan Geological Bureau.1:200 000 Regional Geological Report of Linru Area[R].Beijing:National Geological Archives,1965.
[37] PENG J W.Sedimentology of the Upper Pennsylvanian Organic-rich Cline Shale,Midland Basin:From Gravity Flows to Pelagic Suspension Fallout[J].Sedimentology,2021,68(2):805-833.
[38] 宋慧波,胡 斌,张 璐,等.河南省太原组沉积时期岩相古地理特征[J].沉积学报,2011,29(5):876-888.
SONG Hui-bo,HU Bin,ZHANG Lu,et al.Characte-ristics of Lithofacies Paleogeography of the Taiyuan Formation Sedimentary Period,Henan Province[J].Acta Sedimentologica Sinica,2011,29(5):876-888.
[39] 姚 旭,周瑶琪,李 素.豫西地区早二叠世碳酸盐岩台地沉积环境及地球化学特征[J].现代地质,2013,27(6):1340-1347.
YAO Xu,ZHOU Yao-qi,LI Su.Sedimentary Environments and Geochemical Characteristics of Early Permian Carbonate Platform in the Western Henan Pro-vince[J].Geoscience,2013,27(6):1340-1347.
[40] JAMES N P.Reef Environment[M]∥SCHOLLE P A,BEBOUT D G,MOORE C H.Carbonate Depositional Environments.Tulsa:AAPG,1983:345-440.
[41] GODET A,FÖLLMI K B,BODIN S,et al.Stratigra-phic,Sedimentological and Palaeoenvironmental Constraints on the Rise of the Urgonian Platform in the Western Swiss Jura[J].Sedimentology,2010,57(4):1088-1125.
[42] 俎新许,陈倩倩,李 锋,等.河南省上石炭统本溪组沉积相分析[J].矿产与地质,2019,33(4):683-689.
ZU Xin-xu,CHEN Qian-qian,LI Feng,et al.Sedimentary Facies Analysis of Benxi Formation of Upper Carboniferous in Henan Province[J].Mineral Resour-ces and Geology,2019,33(4):683-689.
[43] GAO S,LIU X M,YUAN H L,et al.Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-inductively Coupled Plasma-mass Spectrometry[J].Geostandards Newsletter,2002,26(2):181-196.
[44] HONTY M,CLAUER N,SUCHA V.Rare-earth Ele-mental Systematics of Mixed-layered Illite-smectite from Sedimentary and Hydrothermal Environments of the Western Carpathians(Slovakia)[J].Chemical Geo-logy,2008,249(1/2):167-190.
[45] MILODOWSKI A E,ZALASIEWICZ J A.Redistribution of Rare Earth Elements during Diagenesis of Turbidite/Hemipelagite Mudrock Sequences of Llandovery Age from Central Wales[J].Geological Society,London,Special Publications,1991,57(1):101-124.
[46] MCLENNAN S M.Weathering and Global Denudation[J].The Journal of Geology,1993,101(2):295-303.
[47] FEDO C M,WAYNE NESBITT H,YOUNG G M.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols,with Implications for Paleoweathering Conditions and Provenance[J].Geology,1995,23(10):921-924.
[48] COX R,LOWE D R,CULLERS R L.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States[J].Geochimica et Cosmochimica Acta,1995,59(14):2919-2940.
[49] DINIS P,GARZANTI E,VERMEESCH P,et al.Climatic Zonation and Weathering Control on Sediment Composition(Angola)[J].Chemical Geology,2017,467:110-121.
[50] PARKER A.An Index of Weathering for Silicate Ro-cks[J].Geological Magazine,1970,107(6):501-504.
[51] TAYLOR S R,MCLENNAN S H.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell,1985.
[52] MCLENNAN S M.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes[J].Reviews in Mineralogy and Geochemistry,1989,21(1):169-200.
[53] MCLENNAN S M,HEMMING S,MCDANIEL D K,et al.Geochemical Approaches to Sedimentation,Pro-venance,and Tectonics[M]∥JOHNSSON M J,BASU A.Processes Controlling the Composition of Clastic Sediments.Boulder:Geological Society of America,1993:21-40.
[54] 熊小辉,肖加飞.沉积环境的地球化学示踪[J].地球与环境,2011,39(3):405-414.
XIONG Xiao-hui,XIAO Jia-fei.Geochemical Indicators of Sedimentary Environments:A Summary[J].Earth and Environment,2011,39(3):405-414.
[55] 李朋武,张世红,高 锐,等.内蒙古中部晚石炭世—早二叠世古地磁新数据及其地质意义[J].吉林大学学报(地球科学版),2012,42(增):423-434,440.
LI Peng-wu,ZHANG Shi-hong,GAO Rui,et al.New Upper Carboniferous-Lower Permian Paleomagnetic Results from the Central Inner Mongolia and Their Geological Implications[J].Journal of Jilin University(Earth Science Edition),2012,42(S):423-434,440.
[56] BRACCIALI L,MARRONI M,LUCA P,et al.Geochemistry and Petrography of Western Tethys Cretaceous Sedimentary Covers(Corsica and Northern Apennines):From Source Areas to Configuration of Margins[M]∥ARRIBAS J,JOHNSSON M J,CRITELLI S.Sedimentary Provenance and Petrogenesis:Perspectives from Petrography and Geochemistry.Boulder:Geological Society of America,2007:73-93.
[57] ALLÈGRE C J,MINSTER J F.Quantitative Models of Trace Element Behavior in Magmatic Processes[J].Earth and Planetary Science Letters,1978,38(1):1-25.
[58] 张西营,马海州,谭红兵.Sr的地球化学指示意义及其应用[J].盐湖研究,2002,10(3):38-44.
ZHANG Xi-ying,MA Hai-zhou,TAN Hong-bing.The Indicative Significance and Application of Strontium in Geochemistry[J].Journal of Salt Lake Research,2002,10(3):38-44.
[59] WEI W,ALGEO T J.Elemental Proxies for Paleosalinity Analysis of Ancient Shales and Mudrocks[J].Geochimica et Cosmochimica Acta,2020,287:341-366.
[60] WIGNALL P B,TWITCHETT R J.Oceanic Anoxia and the End Permian Mass Extinction[J].Science,1996,272:1155-1158.
[61] JONES B,MANNING D A C.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones[J].Chemical Geology,1994,111(1/2/3/4):111-129.
[62] PI D H,JIANG S Y,LUO L,et al.Depositional Environments for Stratiform Witherite Deposits in the Lower Cambrian Black Shale Sequence of the Yangtze Platform,Southern Qinling Region,SW China:Evidence from Redox-sensitive Trace Element Geochemi-stry[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2014,398:125-131.
[63] GARZANTI E,PADOAN M,SETTI M,et al.Provenance Versus Weathering Control on the Composition of Tropical River Mud(Southern Africa)[J].Chemical Geology,2014,366:61-74.
[64] HATANO N,YOSHIDA K,SASAO E J.Effects of Grain Size on the Chemical Weathering Index:A Case Study of Neogene Fluvial Sediments in Southwest Japan[J].Sedimentary Geology,2019,386:1-8.
[65] LONG X P,YUAN C,SUN M,et al.Geochemistry and Nd Isotopic Composition of the Early Paleozoic Flysch Sequence in the Chinese Altai,Central Asia:Evidence for a Northward-derived Mafic Source and Insight into Nd Model Ages in Accretionary Orogen[J].Gondwana Research,2012,22(2):554-566.
[66] MCLENNAN S M,BOCK B,HEMMING S R,et al.The Roles of Provenance and Sedimentary Processes in the Geochemistry of Sedimentary Rocks[M]∥LENTZ D R.Geochemistry of Sediments and Sedimentary Rocks:Evolutionary Considerations to Mine-ral Deposit-forming Environments.St.John's:Geolo-gical Association of Canada,2003:7-38.
[67] 吴雅琴,赵志琦.高岭石和蒙脱石吸附Li+的实验研究[J].矿物学报,2011,31(2):291-295.
WU Ya-qin,ZHAO Zhi-qi.Experimental Study on the Adsorption of Li+ on Kaolinite and Montmorillonite[J].Acta Mineralogica Sinica,2011,31(2):291-295.
[68] ZHAO L,WARD C R,FRENCH D,et al.Origin of a Kaolinite-NH4-illite-pyrophyllite-chlorite Assemblage in a Marine-influenced Anthracite and Associated Strata from the Jincheng Coalfield,Qinshui Basin,Northern China[J].International Journal of Coal Geo-logy,2018,185:61-78.
[69] QIN Z W,WU Y B,SIEBEL W,et al.Genesis of Adakitic Granitoids by Partial Melting of Thickened Lower Crust and Its Implications for Early Crustal Grow-th:A Case Study from the Huichizi Pluton,Qinling Orogen,Central China[J].Lithos,2015,238:1-12.
[70] ABDALLSAMED M I M,WU Y B,ZHANG W X,et al.Early Paleozoic High-Mg Granodiorite from the Erlangping Unit,North Qinling Orogen,Central China:Partial Melting of Metasomatic Mantle during the Initial Back-arc Opening[J].Lithos,2017,288/289:282-294.
[71] ZHOU Q F,QIN K Z,TANG D M.Mineralogy of Columbite-group Minerals from the Rare-element Pegmatite Dykes in the East-Qinling Orogen,Central China:Implications for Formation Times and Ore Genesis[J].Journal of Asian Earth Sciences,2021,218:104879.
[72] GAO S,LUO T C,ZHANG B R,et al.Chemical Composition of the Continental Crust as Revealed by Stu-dies in East China[J].Geochimica et Cosmochimica Acta,1998,62(11):1959-1975.
[73] SINHA S,ISLAM R,GHOSH S K,et al.Geochemistry of Neogene Siwalik Mudstones Along Punjab Re-entrant,India:Implications for Source-area Weathering,Provenance and Tectonic Setting[J].Current Science,2007,92(8):1103-1113.

Memo

Memo:
-
Last Update: 2023-05-20