|Table of Contents|

Fatigue Deterioration and Multi-field Damage to Rocks Under High Temperature Water-rock Interaction in Hot Dry Rock Development(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第03期
Page:
460-473
Research Field:
工程地质与环境灾害
Publishing date:

Info

Title:
Fatigue Deterioration and Multi-field Damage to Rocks Under High Temperature Water-rock Interaction in Hot Dry Rock Development
Author(s):
SUN Qiang12 GAO Qian3 ZHANG Yu-liang4* HU Jian-jun56 GENG Ji-shi12 ZHOU Shu-tao1 YUAN Shi-hao1
(1. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China; 2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization of Ministry of Natural Resources, Xi'an University of Science and Technology, Xi'an 710021, Shaanxi, China; 3. College of New Energy, Xi'an Shiyou University, Xi'an 710065, Shaanxi, China; 4. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; 5. Institute of Deep Earth Science & Green Energy, Shenzhen University, Shenzhen 518060, Guangdong, China; 6. Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Shenzhen University, Shenzhen 518060, Guangdong, China)
Keywords:
hot dry rock enhanced geothermal system stress corrosion effect fatigue deterioration multi-field coupling water-rock interaction
PACS:
P314
DOI:
10.19814/j.jese.2022.12048
Abstract:
Geothermal resources, which are located deep in the Earth, are expected to become one of the important ways to break China's energy dilemma, and promote the realization of carbon peak by 2030 and carbon neutrality by 2060 with the advantages of abundant reserves, clean and renewable. In the process of developing hot dry rock(HDR), the problem of water-rock interaction under high-temperature and high-pressure environment is faced. Under the coupling action of multiple fields such as thermal-hydraulic-mechanical-chemical(THMC), the stress corrosion effect and fatigue deterioration of rock mass will induce rock micro-cracking and fracture expansion, nucleation and clustering behavior, which will affect the heat exchange efficiency of enhanced geothermal system(EGS)and stability of geological body. This is the bottleneck that restricts the long-term safe development of HDR and needs to be broken. Based on experimental exploration, theoretical modeling, numerical analysis and other multi-measures, cross-scale methods for multi-field damage study on HDR under high-temperature and high-pressure, the stress corrosion effect of HDR under high-temperature, high-pressure and water environment was analyzed, the dynamic process and engineering response of the structural evolution of HDR reservoir were elucidated in the cyclic production process of low-temperature mass and high-temperature geological body cyclic heat exchange, and then the fatigue deterioration damage mechanism of HDR reservoir under THMC multi-field coupling was revealed, and the theoretical support and geological guarantee for the efficient and safe development of deep geothermal resources in China were provided. However, it is still urgent to carry out further research on the fatigue deterioration mechanism and long-term stability of HDR under the stress corrosion effect of rock mass and THMC multi-field coupling action of EGS, such as the long-term strength evaluation model considering stress corrosion effect and fatigue damage, the evaluation method of long-term stability based on cross-scale fatigue damage, and THMC multi-field coupling numerical method for reservoir reconstruction and fracture network evolution.

References:

[1] HU J J,XIE H P,SUN Q,et al.Changes in the Thermodynamic Properties of Alkaline Granite After Cyclic Quenching Following High Temperature Action[J].International Journal of Mining Science and Technology,2021,31(5):843-852.
[2] NB/T 10097—2018,地热能术语[S].
NB/T 10097—2018,Terminology of Geothermal Energy[S].
[3] XIE H P,LI C B,ZHOU T,et al.Conceptualization and Evaluation of the Exploration and Utilization of Low/Medium-temperature Geothermal Energy:A Ca-se Study of the Guangdong-Hong Kong-Macao Greater Bay Area[J].Geomechanics and Geophysics for Geo-energy and Geo-resources,2020,6(1):1-22.
[4] 王贵玲,张 薇,梁继运,等.中国地热资源潜力评价[J].地球学报,2017,38(4):449-459.
WANG Gui-ling,ZHANG Wei,LIANG Ji-yun,et al.Evaluation of Geothermal Resources Potential in China[J].Acta Geoscientica Sinica,2017,38(4):449-459.
[5] 蔺文静,刘志明,王婉丽,等.中国地热资源及其潜力评估[J].中国地质,2013,40(1):312-321.
LIN Wen-jing,LIU Zhi-ming,WANG Wan-li,et al.The Assessment of Geothermal Resources Potential of China[J].Geology in China,2013,40(1):312-321.
[6] 荆铁亚,赵文韬,郜时旺,等.干热岩地热开发实践及技术可行性研究[J].中外能源,2018,23(11):17-22.
JING Tie-ya,ZHAO Wen-tao,GAO Shi-wang,et al.Practice and Technical Feasibility Study of Hot Dry Rock Geothermal Development[J].Sino-global Energy,2018,23(11):17-22.
[7] 许天福,胡子旭,李胜涛,等.增强型地热系统:国际研究进展与我国研究现状[J].地质学报,2018,92(9):1936-1947.
XU Tian-fu,HU Zi-xu,LI Sheng-tao,et al.Enhanced Geothermal System:International Progresses and Research Status of China[J].Acta Geologica Sinica,2018,92(9):1936-1947.
[8] 王贵玲,刘彦广,朱 喜,等.中国地热资源现状及发展趋势[J].地学前缘,2020,27(1):1-9.
WANG Gui-ling,LIU Yan-guang,ZHU Xi,et al.The Status and Development Trend of Geothermal Resources in China[J].Earth Science Frontiers,2020,27(1):1-9.
[9] 齐晓飞,上官拴通,张国斌,等.河北省乐亭县马头营区干热岩资源孔位选址及开发前景分析[J].地学前缘,2020,27(1):94-102.
QI Xiao-fei,SHANGGUAN Shuan-tong,ZHANG Guo-bin,et al.Site Selection and Developmental Prospect of a Hot Dry Rock Resource Project in the Matouying Uplift,Hebei Province[J].Earth Science Frontiers,2020,27(1):94-102.
[10] 庞忠和,罗 霁,程远志,等.中国深层地热能开采的地质条件评价[J].地学前缘,2020,27(1):134-151.
PANG Zhong-he,LUO Ji,CHENG Yuan-zhi,et al.Evaluation of Geological Conditions for the Development of Deep Geothermal Energy in China[J].Earth Science Frontiers,2020,27(1):134-151.
[11] 蔺文静,王贵玲,邵景力,等.我国干热岩资源分布及勘探:进展与启示[J].地质学报,2021,95(5):1366-1381.
LIN Wen-jing,WANG Gui-ling,SHAO Jing-li,et al.Distribution and Exploration of Hot Dry Rock Resources in China:Progress and Inspiration[J].Acta Geologica Sinica,2021,95(5):1366-1381.
[12] 张森琦,严维德,黎敦朋,等.青海省共和县恰卜恰干热岩体地热地质特征[J].中国地质,2018,45(6):1087-1102.
ZHANG Sen-qi,YAN Wei-de,LI Dun-peng,et al.Characteristics of Geothermal Geology of the Qiabuqia HDR in Gonghe Basin,Qinghai Province[J].Geo-logy in China,2018,45(6):1087-1102.
[13] 张森琦,文冬光,许天福,等.美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比[J].地学前缘,2019,26(2):321-334.
ZHANG Sen-qi,WEN Dong-guang,XU Tian-fu,et al.The U.S.Frontier Observatory for Research in Geothermal Energy Project and Comparison of Typical EGS Site Exploration Status in China and U.S.[J].Earth Science Frontiers,2019,26(2):321-334.
[14] 赵 平,金 建,张海政,等.西藏羊八井地热田热水的化学组成[J].地质科学,1998,33(1):61-72.
ZHAO Ping,JIN Jian,ZHANG Hai-zheng,et al.Chemical Composition of Hot Water in the Yangbajing Geothermal Field,Tibet[J].Scientia Geologica Si-nica,1998,33(1):61-72.
[15] 多 吉.典型高温地热系统:羊八井热田基本特征[J].中国工程科学,2003,5(1):42-47.
DUO Ji.The Basic Characteristics of the Yangbajing Geothermal Field Typical:High Temperature Geothermal System[J].Engineering Science,2003,5(1):42-47.
[16] 李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学,2015,40(11):1858-1869.
LI De-wei,WANG Yan-xin.Major Issues of Resear-ch and Development of Hot Dry Rock Geothermal Energy[J].Earth Science,2015,40(11):1858-1869.
[17] SUN Q,HU J J.The Effect of Rapid Cooling on the Thermal Diffusivity of Granite[J].Journal of Applied Geophysics,2019,168:71-78.
[18] HU J J,XIE H P,GAO M Z,et al.Damage Mechanism and Heat Transfer Characteristics of Limestone After Thermal Shock Cycle Treatments Based on Geothermal Development[J].International Journal of Rock Mechanics and Mining Sciences,2022,160:105269.
[19] SHU B,ZHU R J,TAN J Q,et al.Evolution of Permeability in a Single Granite Fracture at High Temperature[J].Fuel,2019,242:12-22.
[20] 张 健,何雨蓓,范艳霞.松辽盆地地壳热结构与深部热源条件[J].地球科学与环境学报,2023,45(2):157-167.
ZHANG Jian,HE Yu-bei,FAN Yan-xia.Crustal The-rmal Structure and Deep Heat Source Conditions in Songliao Basin,NE China[J].Journal of Earth Scien-ces and Environment,2023,45(2):157-167.
[21] 李 博,王 晔,邹良超,等.岩石裂隙内浆液-水两相流可视化试验与驱替规律研究[J].岩土工程学报,2022,44(9):1608-1616.
LI Bo,WANG Ye,ZOU Liang-chao,et al.Displacement Laws of Grout-water Two-phase Flow in a Rough-walled Rock Fracture Through Visualization Tests[J].Chinese Journal of Geotechnical Engineering,2022,44(9):1608-1616.
[22] LAN H X,ZHANG Y X,MACCIOTTA R,et al.The Role of Discontinuities in the Susceptibility,Development,and Runout of Rock Avalanches:A Review[J].Landslides,2022,19(6):1391-1404.
[23] 邓华锋,王文东,李建林,等.水-岩和重复剪切次序作用下节理岩体损伤效应及模型[J].岩土工程学报,2023,45(3):503-511.
DENG Hua-feng,WANG Wen-dong,LI Jian-lin,et al.Damage Effects and Model for Jointed Rock Mass Under Water-rock Interaction and Repeated Shear Sequence[J].Chinese Journal of Geotechnical Engineering,2023,45(3):503-511.
[24] 兰恒星,彭建兵,祝艳波,等.黄河流域地质地表过程与重大灾害效应研究与展望[J].中国科学:地球科学,2022,52(2):199-221.
LAN Heng-xing,PENG Jian-bing,ZHU Yan-bo,et al.Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin[J].Science China:Earth Sciences,2022,52(2):199-221.
[25] MAJER E L,BARIA R,STARK M,et al.Induced Seismicity Associated with Enhanced Geothermal Sys-tems[J].Geothermics,2007,36(3):185-222.
[26] HÄRING M O,SCHANZ U,LADNER F,et al.Cha-racterisation of the Basel 1 Enhanced Geothermal System[J].Geothermics,2008,37(5):469-495.
[27] EVANS K F,ZAPPONE A,KRAFT T,et al.A Survey of the Induced Seismic Responses to Fluid Injection in Geothermal and CO2 Reservoirs in Europe[J].Geothermics,2012,41:30-54.
[28] 刘贺娟,童荣琛,候正猛,等.地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J].工程科学与技术,2022,54(1):83-96.
LIU He-juan,TONG Rong-chen,HOU Zheng-meng,et al.Review of Induced Seismicity Caused by Subsurface Fluid Injection and Production and Impacts on the Geothermal Energy Production from Deep High Temperature Rock[J].Advanced Engineering Scien-ces,2022,54(1):83-96.
[29] LAN H X,TIAN N M,LI L P,et al.Kinematic-based Landslide Risk Management for the Sichuan-Tibet Grid Interconnection Project(STGIP)in China[J].Engineering Geology,2022,308:106823.
[30] 许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45.
XU Tian-fu,ZHANG Yan-jun,ZENG Zhao-fa,et al.Technology Progress in an Enhanced Geothermal System(Hot Dry Rock)[J].Science & Technology Review,2012,30(32):42-45.
[31] ZENG Y C,SU Z,WU N Y.Numerical Simulation of Heat Production Potential from Hot Dry Rock by Water Circulating Through Two Horizontal Wells at Desert Peak Geothermal Field[J].Energy,2013,56:92-107.
[32] DE SIMONE S,VILARRASA V,CARRERA J,et al.Thermal Coupling May Control Mechanical Stability of Geothermal Reservoirs During Cold Water Injection[J].Physics and Chemistry of the Earth,Parts A/B/C,2013,64:117-126.
[33] DE SIMONE S,CARRERA J,VILARRASA V.Superposition Approach to Understand Triggering Me-chanisms of Post-injection Induced Seismicity[J].Geothermics,2017,70:85-97.
[34] ZAHNG J X,WEN C T,ZHANG H H,et al.Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water:A Review[J].Trends in Food Science & Technology,2020,95:183-195.
[35] YASUHARA H,POLAK A,MITANI Y,et al.Evolution of Fracture Permeability Through Fluid-rock Reaction Under Hydrothermal Conditions[J].Earth and Planetary Science Letters,2006,244(1/2):186-200.
[36] YASUHARA H,ELSWORTH D.Compaction of a Rock Fracture Moderated by Competing Roles of St-ress Corrosion and Pressure Solution[J].Pure and Applied Geophysics,2008,165(7):1289-1306.
[37] GAN Q,ELSWORTH D.Production Optimization in Fractured Geothermal Reservoirs by Coupled Discrete Fracture Network Modeling[J].Geothermics,2016,62:131-142.
[38] DOST B,EDWARDS B,BOMMER J J.The Relationship Between M and ML:A Review and Application to Induced Seismicity in the Groningen Gas Field,the Netherlands[J].Seismological Research Letters,2018,89(3):1062-1074.
[39] ZANG A,ZIMMERMANN G,HOFMANN H,et al.How to Reduce Fluid-injection-induced Seismicity[J].Rock Mechanics and Rock Engineering,2019,52(2):475-493.
[40] RATHNAWEERA T D,WU W,JI Y,et al.Understanding Injection-induced Seismicity in Enhanced Geothermal Systems:From the Coupled Thermo-hydro-mechanical-chemical Process to Anthropogenic Earthquake Prediction[J].Earth-science Reviews,2020,205:103182.
[41] SCHUTJENS P M T M.Experimental Compaction of Quartz Sand at Low Effective Stress and Temperature Conditions[J].Journal of the Geological Society,1991,148(3):527-539.
[42] DOVE P M.Geochemical Controls on the Kinetics of Quartz Fracture at Subcritical Tensile Stresses[J].Journal of Geophysical Research:Solid Earth,1995,100(B11):22349-22359.
[43] HE W,HAJASH A,SPARKS D.Creep Compaction of Quartz Aggregates:Effects of Pore-fluid Flow:A Combined Experimental and Theoretical Study[J].American Journal of Science,2003,303(2):73-93.
[44] CHESTER F M,CHESTER J S,KRONENBERG A K,et al.Subcritical Creep Compaction of Quartz Sand at Diagenetic Conditions:Effects of Water and Grain Size[J].Journal of Geophysical Research:Solid Ear-th,2007,112(B6):004317.
[45] 张荣华,张雪彤,胡书敏,等.中地壳温度压力条件下的水-岩作用化学动力学实验[J].岩石学报,2007,23(11):2933-2942.
ZHANG Rong-hua,ZHANG Xue-tong,HU Shu-min,et al.Kinetic Experiments of Water Rock Interactions at High Temperatures and High Pressures Corresponding to the Middle Crust Conditions[J].Acta Pe-trologica Sinica,2007,23(11):2933-2942.
[46] 张荣华,张雪彤,胡书敏.中地壳的水和水岩相互作用实验及其地球物理涵义[J].地球物理学报,2010,53(9):2244-2256.
ZHANG Rong-hua,ZHANG Xue-tong,HU Shu-min,et al.Experimental Study on Water and Water Rock Interactions in the Mid-crust Conditions and Its Significance[J].Chinese Journal of Geophysics,2010,53(9):2244-2256.
[47] 张雪彤,张荣华,胡书敏.地球内部高温超高压流体的水热金刚石压砧原位观测[J].地质学报,2016,90(8):1846-1859.
ZHANG Xue-tong,ZHANG Rong-hua,HU Shu-min,et al.Fluids in Extreme Conditions of the Earth Interior:1.In-situ Observation of the High Temperature and Ultra-high Pressure Fluids by Using Diamond Anvil Cell[J].Acta Geologica Sinica,2016,90(8):1846-1859.
[48] JIA Y Z,FANG Y,ELSWORTH D,et al.Slip Velocity Dependence of Friction-permeability Response of Shale Fractures[J].Rock Mechanics and Rock Engineering,2020,53(5):2109-2121.
[49] MORROW C A,MOORE D E,LOCKNER D A.Permeability Reduction in Granite Under Hydrothermal Conditions[J].Journal of Geophysical Research:Solid Earth,2001,106(B12):30551-30560.
[50] CAULK R A,GHAZANFARI E,PERDRIAL J N,et al.Experimental Investigation of Fracture Aperture and Permeability Change Within Enhanced Geothermal Systems[J].Geothermics,2016,62:12-21.
[51] DECUIR M J,GUPTA R B,SASTRI B.Beneficiation of Coal Using Supercritical Water and Carbon Dioxide Extraction:Sulfur Removal[J].International Journal of Coal Science & Technology,2021,8(4):717-726.
[52] 赵阳升,万志军,张 渊,等.岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
ZHAO Yang-sheng,WAN Zhi-jun,ZHANG Yuan,et al.Experimental Study of Related Laws of Rock Thermal Cracking and Permeability[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1970-1976.
[53] KUMARI W G P,RANJITH P G,PERERA M S A,et al.Hydraulic Fracturing Under High Temperature and Pressure Conditions with Micro CT Applications:Geothermal Energy from Hot Dry Rocks[J].Fuel,2018,230:138-154.
[54] XING Y K,ZHANG G Q,LUO T Y,et al.Hydraulic Fracturing in High-temperature Granite Characterized by Acoustic Emission[J].Journal of Petroleum Science and Engineering,2019,178(2):475-484.
[55] SHI Y,SONG X Z,LI J C,et al.Analysis for Effects of Complex Fracture Network Geometries on Heat Extraction Efficiency of a Multilateral-well Enhanced Geothermal System[J].Applied Thermal Engineering,2019,159:113828.
[56] 黄中伟,温海涛,武晓光,等.液氮冷却作用下高温花岗岩损伤实验[J].中国石油大学学报(自然科学版),2019,43(2):68-76.
HUANG Zhong-wei,WEN Hai-tao,WU Xiao-guang,et al.Experimental Study on Cracking of High Temperature Granite Using Liquid Nitrogen[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(2):68-76.
[57] 周 舟,金 衍,曾义金,等.青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J].吉林大学学报(地球科学版),2019,49(5):1425-1430.
ZHOU Zhou,JIN Yan,ZENG Yi-jin,et al.Experimental Study on Hydraulic Fracturing Physics Simulation,Crack Initiation and Propagation in Hot Dry Rock Geothermal Reservoir in Gonghe Basin,Qinghai[J].Journal of Jilin University(Earth Science Edition),2019,49(5):1425-1430.
[58] 曲占庆,张 伟,郭天魁,等.基于局部热非平衡的含裂缝网络干热岩采热性能模拟[J].中国石油大学学报(自然科学版),2019,43(1):90-98.
QU Zhan-qing,ZHANG Wei,GUO Tian-kui,et al.Numerical Simulation of Heat Mining Performance of Hot Dry Rocks with Fracture Network Based on a Local Thermal Non-equilibrium Model[J].Journal of China University of Petroleum(Edition of Natural Sci-ence),2019,43(1):90-98.
[59] 郭清海,何 曈,庄亚芹,等.化学刺激法提高花岗岩类岩石裂隙渗透性的实验研究[J].地学前缘,2020,27(1):159-169.
GUO Qing-hai,HE Tong,ZHUANG Ya-qin,et al.Expansion of Fracture Network in Granites via Che-mical Stimulation:A Laboratory Study[J].Earth Science Frontiers,2020,27(1):159-169.
[60] 卢运虎,王世永,陈 勉,等.高温热处理共和盆地干热岩力学特性实验研究[J].地下空间与工程学报,2020,16(1):114-121.
LU Yun-hu,WANG Shi-yong,CHEN Mian,et al.Experimental Study on Mechanical Properties of Hot Dry Rock[J].Chinese Journal of Underground Space and Engineering,2020,16(1):114-121.
[61] 亢方超,唐春安.基于开挖的增强型地热系统概述[J].地学前缘,2020,27(1):185-193.
KANG Fang-chao,TANG Chun-an.Overview of Enhanced Geothermal System(EGS)Based on Excavation in China[J].Earth Science Frontiers,2020,27(1):185-193.
[62] 郤保平,吴阳春,王 帅,等.青海共和盆地花岗岩高温热损伤力学特性试验研究[J].岩石力学与工程学报,2020,39(1):69-83.
XI Bao-ping,WU Yang-chun,WANG Shuai,et al.Experimental Study on Mechanical Properties of Granite Taken from Gonghe Basin,Qinghai Province After High Temperature Thermal Damage[J].Chinese Journal of Rock Mechanics and Engineering,2020,39(1):69-83.
[63] 郭建春,肖 勇,蒋 恕,等.深层干热岩水力剪切压裂认识与实践[J].地质学报,2021,95(5):1582-1593.
GUO Jian-chun,XIAO Yong,JIANG Shu,et al.Understanding and Practice of Hydraulic Shearing in Deep Hot Dry Rocks[J].Acta Geologica Sinica,2021,95(5):1582-1593.
[64] 宇 波,李庭宇,韩东旭,等.干热岩流动换热多尺度有限容积法[J].天然气工业,2021,41(3):168-178.
YU Bo,LI Ting-yu,HAN Dong-xu,et al.Multi-scale Finite Volume Method for the Flow and Heat Transfer Process in Hot Dry Rocks[J].Natural Gas Industry,2021,41(3):168-178.
[65] 石 宇,宋先知,李根生,等.多分支井地热系统CO2与水的取热效果对比[J].天然气工业,2021,41(11):179-190.
SHI Yu,SONG Xian-zhi,LI Gen-sheng,et al.Comparison of Heat Extraction Performance Between CO2 and Water in a Multilateral-well Geothermal System[J].Natural Gas Industry,2021,41(11):179-190.
[66] SUN Q,ZHANG H,HU J,et al.Damage Mechanism of Granite Under Subcritical Water-rock Interaction[J].Environmental Earth Sciences,2023,82(5):124.
[67] IWASAKI H,TORIKAI D.Thermal Shock of Quartz Lascas[J].Journal of Materials Science,1993,28(19):5223-5228.
[68] GAN Q,ELSWORTH D.Analysis of Fluid Injection-induced Fault Reactivation and Seismic Slip in Geothermal Reservoirs[J].Journal of Geophysical Research:Solid Earth,2014,119(4):3340-3353.
[69] SHAO S S,WASANTHA P L P,RANJITH P G,et al.Effect of Cooling Rate on the Mechanical Beha-vior of Heated Strathbogie Granite with Different Grain Sizes[J].International Journal of Rock Mecha-nics and Mining Sciences,2014,70:381-387.
[70] RAWAL C,GHASSEMI A.A Reactive Thermo-poroe-lastic Analysis of Water Injection into an Enhanced Geothermal Reservoir[J].Geothermics,2014,50:10-23.
[71] CANDELA T,VAN DER VEER E F,FOKKER P A.On the Importance of Thermo-elastic Stressing in Injection-induced Earthquakes[J].Rock Mechanics and Rock Engineering,2018,51(12):3925-3936.
[72] BUIJZE L,VAN BIJSTERVELDT L,CREMER H,et al.Review of Induced Seismicity in Geothermal Systems Worldwide and Implications for Geothermal Systems in the Netherlands[J].Netherlands Journal of Geosciences,2019,98:E13.
[73] 胡晓东.高温射流作用下花岗岩破碎机制与参数研究[D].北京:中国石油大学,2019.
HU Xiao-dong.Investigation on Mechanism and Parameters of Granite Breakage with Hydrothermal Jet[D].Beijing:China University of Petroleum,2019.
[74] 张洪伟,万志军,周长冰,等.干热岩高温力学特性及热冲击效应分析[J].采矿与安全工程学报,2021,38(1):138-145.
ZHANG Hong-wei,WAN Zhi-jun,ZHOU Chang-bing,et al.High Temperature Mechanical Properties and Thermal Shock Effect of Hot Dry Rock[J].Journal of Mining & Safety Engineering,2021,38(1):138-145.
[75] 秦 浩,汪道兵,郑 臣,等.高温作用下干热岩物理性质实验[J].东北石油大学学报,2022,46(4):105-116.
QIN Hao,WANG Dao-bing,ZHENG Chen,et al.Experiment on Physical Properties of Hot Dry Rock Under High Temperature Action[J].Journal of Northeast Petroleum University,2022,46(4):105-116.
[76] 尹欣欣,蒋长胜,翟鸿宇,等.全球干热岩资源开发诱发地震活动和灾害风险管控[J].地球物理学报,2021,64(11):3817-3836.
YIN Xin-xin,JIANG Chang-sheng,ZHAI Hong-yu,et al.Review of Induced Seismicity and Disaster Risk Control in Dry Hot Rock Resource Development Worldwide[J].Chinese Journal of Geophysics,2021,64(11):3817-3836.
[77] BROWN D.The U.S.Hot Dry Rock Program:20 Years of Experience in Reservoir Testing[C]∥WGC.Proceedings of the World Geothermal Congress 1995.Florence:WGC,1995:2607-2611.
[78] BROWN D W.HDR Geothermal Energy:Important Lessons from Fenton Hill[C]∥Stanford Geothermal Program.Proceeding of 34th Workshop on Geothermal Reservoir Engineering 2009.New York:Curran and Associates,Inc.,2009:127-130.
[79] GENTER A,EVANS K,CUENOT N,et al.Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems(EGS)[J].Comptes Rendus Geoscience,2010,342(7/8):502-516.
[80] 许天福,袁益龙,姜振蛟,等.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152.
XU Tian-fu,YUAN Yi-long,JIANG Zhen-jiao,et al.Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J].Journal of Jilin University(Earth Science Edition),2016,46(4):1139-1152.
[81] YAMAGUCHI S,AKIBAYASHI S,ROKUGAWA S,et al.The Numerical Modeling Study of the Hijiori HDR Test Site[C]∥WGC.Proceedings of the World Geothermal Congress 2000.Kyushu-Tohoku:WGC,2000:3975-3980.
[82] KIM S,HOSSEINI S A.Hydro-thermo-mechanical Analysis During Injection of Cold Fluid into a Geolo-gic Formation[J].International Journal of Rock Mechanics and Mining Sciences,2015,77:220-236.
[83] GAO Q,GHASSEMI A.Height Growth in Layered Unconventional Reservoirs:The Impact of Formation Moduli,Interfaces,and In-situ Stress[J].SPE Production & Operations,2020,35(4):756-774.
[84] CHABORA E,ZEMACH E,SPIELMAN P,et al.Hydraulic Stimulation of Well 27-15,Desert Peak Geothermal Field,Nevada,USA[C]∥Stanford Geothermal Program.Proceeding of 37th Workshop on Geothermal Reservoir Engineering 2012.New York:Curran and Associates,Inc.,2012:647-658.
[85] DEMPSEY D,KELKAR S,DAVATZES N,et al.Nu-merical Modeling of Injection,Stress and Permeability Enhancement During Shear Stimulation at the Desert Peak Enhanced Geothermal System[J].International Journal of Rock Mechanics and Mining Sciences,2015,78:190-206.
[86] SAFARI R,GHASSEMI A.3D Thermo-poroelastic Analysis of Fracture Network Deformation and Induced Micro-seismicity in Enhanced Geothermal Systems[J].Geothermics,2015,58:1-14.
[87] JING Z Z,WATANABE K,WILLIS-RICHARDS J,et al.A 3D Water/Rock Chemical Interaction Model for Prediction of HDR/HWR Geothermal Reservoir Performance[J].Geothermics,2002,31(1):1-28.
[88] PANDEY S N,CHAUDHURI A.The Effect of He-terogeneity on Heat Extraction and Transmissivity Evolution in a Carbonate Reservoir:A Thermo-hydro-chemical Study[J].Geothermics,2017,69:45-54.
[89] PANDEY S N,VISHAL V,CHAUDHURI A.Geothermal Reservoir Modeling in a Coupled Thermo-hydro-mechanical-chemical Approach:A Review[J].Earth-science Reviews,2018,185:1157-1169.
[90] PALUSZNY A,THOMAS R N,SACEANU M C,et al.Hydro-mechanical Interaction Effects and Channelling in Three-dimensional Fracture Networks Undergoing Growth and Nucleation[J].Journal of Rock Mechanics and Geotechnical Engineering,2020,12(4):707-719.
[91] SALIMZADEH S,PALUSZNY A,NICK H M,et al.A Three-dimensional Coupled Thermo-hydro-mecha-nical Model for Deformable Fractured Geothermal Systems[J].Geothermics,2018,71:212-224.

Memo

Memo:
-
Last Update: 2023-05-30