|Table of Contents|

Hydrochemical Characteristics and Sources of Small Bayin River Watershed in the Northeast of Qaidam Basin, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第03期
Page:
749-759
Research Field:
水资源与水文地质
Publishing date:

Info

Title:
Hydrochemical Characteristics and Sources of Small Bayin River Watershed in the Northeast of Qaidam Basin, China
Author(s):
LI Dong-li1 HE Hai-bo23 ZHANG Xue-cheng1 GUAN Tian-hao1 YANG Meng-di1 DAI Wen-jing1 SHAO Hang1 DING Shi-yuan1 LI Xiao-dong1*
(1. School of Earth System Science, Tianjin University, Tianjin 300072, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; 3. Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, Yunnan, China)
Keywords:
hydrochemistry ion composition source spatial distribution controlling factor Qaidam Basin Qinghai-Tibet Plateau
PACS:
P592; X143
DOI:
10.19814/j.jese.2022.12047
Abstract:
Hydrochemistry characteristics, which are indicators of the regional climate and environment, can reveal recharge mode and material sources of lakes and rivers in the basin. To investigate the hydrochemical characteristics and the sources of major ions of the small Bayin river watersheds in the northeast of Qaidam Basin, Qinghai-Tibet Plateau, the water samples from Bayin river, Hurleg lake, and Tosen lake were collected during May 2021. The results show that pH, EC, and TDS increase along the flow direction; according to the Sukalev classification, the hydrochemical types of Bayin river, Hurleg lake, and Tosen lake are HCO3-Cl-Na-Ca-Mg/HCO3-Cl-Na-Mg, HCO3-Cl-Na-Mg, and SO4-Cl-Na-Mg, respectively; as a typical closed inland brackish lake, water chemistry of Tosen lake is primarily dominated by evaporation-crystallization processes; while Bayin river and Hurleg lake are jointly influenced by weathering, evaporation-crystallization processes, and sodium salt leaching; owing to the enhanced evaporation, carbonate minerals are always the first phase to precipitate, resulting in the decrease of Ca2+ mass concentration along the flow direction; the Mg2+/Ca2+ molar concentration ratios of Bayin river and Hurleg lake are low, indicating that aragonite or calcite is probably formed; while the Mg2+/Ca2+ molar concentration ratio of Tosen lake is high, indicating that high magnesium calcite or protodolomite might be formed; the main sources of Na+, K+ and Cl- in the water body are the evaporate dissolution such as halite(NaCl)and potash(KCl); moreover, Mg2+ and SO2-4 are mainly derived from the evaporate(MgSO4)weathering; HCO-3 with high mass concentration and Ca2+ may result from rapid dissolution of carbonate minerals, which is also one of the sources of Mg2+.

References:

[1] ZHANG G Q,YAO T D,XIE H J,et al.Response of Tibetan Plateau Lakes to Climate Change:Trends,Patterns,and Mechanisms[J].Earth-science Reviews,2020,208:103269.
[2] MENG X Q,CHEN X,LIN Q,et al.Spatiotemporal Patterns of Organic Carbon Burial over the Last Century in Lake Qinghai,the Largest Lake on the Tibetan Plateau[J].Science of the Total Environment,2023,860:160449.
[3] SUN Y Y,LIANG Y,LIU H,et al.Mid-Miocene Sea Level Altitude of the Qaidam Basin,Northern Tibetan Plateau[J].Communications Earth & Environment,2023,4(1):3.
[4] 王伟涛,张培震,段 磊,等.柴达木盆地新生代地层年代框架与沉积-构造演化[J].科学通报,2022,67(增2):3452-3475.
WANG Wei-tao,ZHANG Pei-zhen,DUAN Lei,et al.Cenozoic Stratigraphic Chronology and Sedimentary-tectonic Evolution of the Qaidam Basin[J].Chinese Science Bulletin,2022,67(S2):3452-3475.
[5] 刘智琦,潘保柱,韩 谞,等.青藏高原湖泊水环境特征及水质评价[J].环境科学,2022,43(11):5073-5083.
LIU Zhi-qi,PAN Bao-zhu,HAN Xu,et al.Water Environmental Characteristics and Water Quality Assessment of Lakes in Tibetan Plateau[J].Environmental Science,2022,43(11):5073-5083.
[6] 李 鹤,李 军,刘小龙,等.青藏高原湖泊小流域水体离子组成特征及来源分析[J].环境科学,2015,36(2):430-437.
LI He,LI Jun,LIU Xiao-long,et al.Composition Cha-racteristics and Source Analysis of Major Ions in Four Small Lake-watersheds on the Tibetan Plateau,China[J].Environmental Science,2015,36(2):430-437.
[7] YANG M D,LI X D,HUANG J,et al.Damming Ef-fects on River Sulfur Cycle in Karst Area:A Case Study of the Wujiang Cascade Reservoirs[J].Agriculture,Ecosystems & Environment,2020,294:106857.
[8] 关天昊,李晓东,王亦尧,等.喀斯特地区深水型水库重金属分布特征、影响因素及来源:以龙滩水库为例[J].上海大学学报(自然科学版),2021,27(2):236-249.
GUAN Tian-hao,LI Xiao-dong,WANG Yi-yao,et al.Distribution Characteristics,Influencing Factors and Sources of Heavy Metals in Karst Deep-water Reservoirs:A Case Study of Longtan Reservoir[J].Journal of Shanghai University(Natural Science Edition),2021,27(2):236-249.
[9] 关天昊,杨梦迪,崔高仰,等.筑坝拦截对深水型水库硫循环的影响:以龙滩水库为例[J].生态学杂志,2022,https:∥kns.cnki.net/kcms/detail/21.1148.Q.20220922.1143.012.html.
GUAN Tian-hao,YANG Meng-di,CUI Gao-yang,et al.Influence of Dam Interception on Sulfur Cycle in Deep-water Reservoir:A Case Study of Longtan Re-servoir in China[J].Chinese Journal of Ecology,2022,https:∥kns.cnki.net/kcms/detail/21.1148.Q.202209-22.1143.012.html.
[10] ZHANG C J,ZHANG W Y,CHENG D S,et al.Hy-drochemical Characteristics and Paleoclimate Changes Recorded from Sugan Lake on the Northern Boundary of Tibetan Plateau Since Mid-Holocene[J].Catena,2022,217:106527.
[11] 翟婧雅,金彦香,金 鑫.巴音河流域水化学与氢氧同位素特征研究[J].灌溉排水学报,2022,41(11):101-106.
ZHAI Jing-ya,JIN Yan-xiang,JIN Xin,et al.Hydrochemical Property and Hydrogen and Oxygen Isoto-pes in the Bayin River Basin[J].Journal of Irrigation and Drainage,2022,41(11):101-106.
[12] 李 皎,李明慧,方小敏,等.柯鲁克湖水化学特征分析[J].干旱区地理,2015,38(1):43-51.
LI Jiao,LI Ming-hui,FANG Xiao-min,et al.Hydrochemical Characteristics of the Hurleg Lake[J].Arid Land Geography,2015,38(1):43-51.
[13] 龙启福,封希媛,刘 静,等.青藏高原克鲁克—托素湖湿地系统微生物多样性[J].地球与环境,2017,45(4):399-407.
LONG Qi-fu,FENG Xi-yuan,LIU Jing,et al.Microbial Diversity of Keluke-Tuosu Lake Wetland Reserve in Qinghai-Tibet Plateau[J].Earth and Environment,2017,45(4):399-407.
[14] 张 棣,马云麒,李兴意,等.托素湖湖水蒸发过程中析盐及其pH值的变化规律研究[J].盐湖研究,2022,30(1):46-56.
ZHANG Di,MA Yun-qi,LI Xing-yi,et al.Regularity of Salt Separation and the Variation of pH Values in the Process of Evaporation in Tuosu Lake Water[J].Journal of Salt Lake Research,2022,30(1):46-56.
[15] CUI B L,LI X Y.Characteristics of Stable Isotope and Hydrochemistry of the Groundwater Around Qinghai Lake,NE Qinghai-Tibet Plateau,China[J].Environmental Earth Sciences,2014,71(3):1159-1167.
[16] XIONG X,ZHANG K,CHEN X C,et al.Sources and Distribution of Microplastics in China's Largest Inland Lake-Qinghai Lake[J].Environmental Pollution,2018,235:899-906.
[17] YANG X Y,WEN J,HUANG A N,et al.Short-term Climatic Effect of Gyaring and Ngoring Lakes in the Yellow River Source Area,China[J].Frontiers in Ear-th Science,2022,9:770757.
[18] 韩积斌,许建新,王国强,等. 柴达木盆地尕斯库勒盐湖区成盐物质的来源与水力迁移作用[J].湖泊科学,2017,29(6):1551-1560.
HAN Ji-bin,XU Jian-xin,WANG Guo-qiang,et al.The Material Sources and It's Hydraulic Migration in the Gas Hure Salt Lake,Qaidam Basin,China[J].Journal of Lake Sciences,2017,29(6):1551-1560.
[19] 张景涛,史浙明,王广才,等.柴达木盆地大柴旦地区地下水水化学特征及演化规律[J].地学前缘,2021,28(4):194-205.
ZHANG Jing-tao,SHI Zhe-ming,WANG Guang-cai,et al.Hydrochemical Characteristics and Evolution of Groundwater in the Dachaidan Area,Qaidam Basin[J].Earth Science Frontiers,2021,28(4):194-205.
[20] FAN Q S,MA H Z,CAO G C,et al.Geomorphic and Chronometric Evidence for High Lake Level History in Gahai Lake and Toson Lake of Northeastern Qai-dam Basin,Northeastern Qinghai-Tibetan Plateau[J].Journal of Quaternary Science,2012,27(8):819-827.
[21] 闫露霞.青藏高原湖泊与湿地水化学特征及其物质来源[D].兰州:西北师范大学,2019.
YAN Lu-xia.Hydrochemical Characteristics and Material Sources of Lakes and Wetlands in Qinghai-Tibet Plateau[D].Lanzhou:Northwest Normal University,2019.
[22] 闫宝华.柴达木盆地东北部中新世沉积物元素特征与源区化学风化[D].兰州:兰州大学,2013.
YAN Bao-hua.Elemental Characteristics of Miocene Sediments in the Northeastern Qaidam Basin and Implications for Chemical Weathering in the Drainage Area[D].Lanzhou:Lanzhou University,2013.
[23] 张新新.柴达木盆地可鲁克湖—托素湖湿地自然保护区生态系统服务价值综合评估[D].昆明:云南大学,2017.
ZHANG Xin-xin.Comprehensive Evaluation of Ecosystem Service Value of Keluke-Tuosu Lake Wetland Nature Reserve in Qaidam Basin[D].Kunming:Yunnan University,2017.
[24] 李冬丽,贺海波.西南喀斯特地区水体硝态氮时空分布特征及其来源解析[J].地球化学,2022,51(1):34-45.
LI Dong-li,HE Hai-bo.Spatial-temporal Distribution and Sources of Nitrate-nitrogen in Karst Water,Southwest China[J].Geochimica,2022,51(1):34-45.
[25] GIBBS R J.Mechanisms Controlling World Water Che-mistry[J].Science,1970,170:1088-1090.
[26] 文广超,王文科,段 磊,等.基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J].干旱区地理,2018,41(4):734-743.
WEN Guang-chao,WANG Wen-ke,DUAN Lei,et al.Quantitatively Evaluating Exchanging Relationship Between River Water and Groundwater in Bayin River Basin of Northwest China Using Hydrochemistry and Stable Isotope[J].Arid Land Geography,2018,41(4):734-743.
[27] WEBSTER J G,BROWN K L,VINCENT W F.Geochemical Processes Affecting Meltwater Chemistry and the Formation of Saline Ponds in the Victoria Va-lley and Bull Pass Region,Antarctica[J].Hydrobiologia,1994,281(3):171-186.
[28] 王海雷,王云生.青藏高原湖泊Mg2+、Ca2+和Mg/Ca盐度指示意义的初步分析[J].湖泊科学,2010,22(6):894-900.
WANG Hai-lei,WANG Yun-sheng.Preliminary Ana-lysis on Mg2+,Ca2+ and Mg/Ca as Salinity Indicators of Lakes in the Qinghai-Tibetan Plateau[J].Journal of Lake Sciences,2010,22(6):894-900.
[29] 王君波,朱立平,鞠建廷,等.西藏纳木错东部湖水及入湖河流水化学特征初步研究[J].地理科学,2009,29(2):288-293.
WANG Jun-bo,ZHU Li-ping,JU Jian-ting,et al.Water Chemistry of Eastern Nam Lake Area and Inflowing Rivers in Tibet[J].Scientia Geographica Sinica,2009,29(2):288-293.
[30] 郭军明,康世昌,张强弓,等.青藏高原纳木错湖水主要化学离子的时空变化特征[J].环境科学,2012,33(7):2295-2302.
GUO Jun-ming,KANG Shi-chang,ZHANG Qiang-gong,et al.Temporal and Spatial Variations of Major Ions in Nam Co Lake Water,Tibetan Plateau[J].Environmental Science,2012,33(7):2295-2302.
[31] CHEN J S,WANG F Y,XIA X H,et al.Major Element Chemistry of the Changjiang(Yangtze River)[J].Chemical Geology,2002,187(3/4):231-255.
[32] 贺海波,李祥忠.抚仙湖水生植物HCO-3利用效率及与之相关的内源有机碳沉积通量研究[J].第四纪研究,2021,41(4):1140-1146.
HE Hai-bo,LI Xiang-zhong.Study on the Utilization Efficiency of HCO-3 by Aquatic Plants and the Buried Flux of Autochthonous Organic Carbon in Fuxian Lake[J].Quaternary Sciences,2021,41(4):1140-1146.
[33] GAILLARDET J,DUPRÉ B,LOUVAT P,et al.Glo-bal Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers[J].Chemical Geology,1999,159(1/2/3/4):3-30.
[34] STALLARD R F,EDMOND J M.Geochemistry of the Amazon:3.Weathering Chemistry and Limits to Dissolved Inputs[J].Journal of Geophysical Resear-ch:Oceans,1987,92(C8):8293-8302.
[35] 曾庆睿,刘再华.玄武岩风化是重要的碳汇机制吗?[J].科学通报,2017,62(10):1041-1049.
ZENG Qing-rui,LIU Zai-hua.Is Basalt Weathering a Major Mechanism for Atmospheric CO2 Consumption?[J].Chinese Science Bulletin,2017,62(10):1041-1049.
[36] BLUM J D,GAZIS C A,JACOBSON A D,et al.Carbonate Versus Silicate Weathering in the Raikhot Watershed Within the High Himalayan Crystalline Series[J].Geology,1998,26(5):411-414.
[37] HARRIS N,BICKLE M,CHAPMAN H,et al.The Significance of Himalayan Rivers for Silicate Weathering Rates:Evidence from the Bhote Kosi Tributary[J].Chemical Geology,1998,144(3/4):205-220.
[38] TIPPER E T,GAILLARDET J,GALY A,et al.Calcium Isotope Ratios in the World's Largest Rivers:A Constraint on the Maximum Imbalance of Oceanic Calcium Fluxes[J].Global Biogeochemical Cycles,2010,24(3):003574.
[39] 蒲 焘,何元庆,朱国锋,等.丽江盆地地表-地下水的水化学特征及其控制因素[J].环境科学,2012,33(1):48-54.
PU Tao,HE Yuan-qing,ZHU Guo-feng,et al.Geochemistry of Surface and Ground Water in the Lijang Basin,Northwest Yunnan [J].Environmental Scien-ce,2012,33(1):48-54.

Memo

Memo:
-
Last Update: 2023-05-30