|Table of Contents|

Landslide Intelligent Recognition Based on Multi-source Data Fusion(PDF)

¡¶µØÇò¿ÆѧÓë»·¾³Ñ§±¨¡·[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023ÄêµÚ04ÆÚ
Page:
920-928
Research Field:
»·¾³Óë¿É³ÖÐø·¢Õ¹×¨¿¯
Publishing date:

Info

Title:
Landslide Intelligent Recognition Based on Multi-source Data Fusion
Author(s):
XIN Lu-bin1 HAN Ling123* LI Liang-zhi1
(1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 2. School of Land Engineering, Chang'an University, Xi'an 710054, Shaanxi, China; 3. Shaanxi Key Laboratory of Land Reclamation Engineering, Xi'an 710054, Shaanxi, China)
Keywords:
geological hazard landslide identification deep learning feature extraction semantic segmentation multi-source data residual network remote sensing
PACS:
P642.22; TP183
DOI:
-
Abstract:
The identification and investigation of landslide disasters are important basis for disaster prevention and mitigation. The traditional landslide recognition method has a low degree of automation, but the study on the intelligent landslide recognition model based on deep learning is very necessary for improving the accuracy and efficiency of landslide recognition. First of all, the optical remote sensing image, DEM data, geological data and rainfall data were introduced to construct landslide multi-source data set. Because multi-source heterogeneous data are not unified on the dimensional scale, the multi-source heterogeneous data preprocessing process and fusion model were designed. Secondly, the Res-UNet model is constructed as a network model for intelligent landslide recognition, and the training set and test set are divided by the ratio of 8:2. Finally, different data inputs are used for landslide recognition, and the Res-UNet model is compared with the mainstream semantic segmentation network models(FCN, U-Net and SegNet). The results show that multi-source data input has better landslide recognition results than single data input, and has more than 5% improvement in precision, recall, F1-score and MIoU; the precision of the landslide identification results of Res-UNet model is above 0.85, and it has excellent landslide identification, which can provide technical support for rapid and accurate identification of regional landslides.

References:

[1] ËïƼƼ,ÕÅïʡ,¼Ö ¿¡,µÈ.ÖйúÎ÷²¿»ÆÍÁÇøµØÖÊÔÖº¦µ÷²éÑо¿½øÕ¹[J].Î÷±±µØÖÊ,2022,55(3):96-107.
SUN Ping-ping,ZHANG Mao-sheng,JIA Jun,et al.Geo-hazards Research and Investigation in the Loess Regions of Western China[J].Northwestern Geology,2022,55(3):96-107.
[2] HEIDARZADEH M,MIYAZAKI H,ISHIBE T,et al.Field Surveys of September 2018 Landslide-generated Waves in the Apporo Dam Reservoir,Japan:Combined Hazard from the Concurrent Occurrences of a Typhoon and an Earthquake[J].Landslides,2023,20(1):143-156.
[3] Àî Ñô,ÕŽ¨¾ü,κ¹ãÀ«,µÈ.½úÎ÷»ÆÍÁÇø¼«¶Ë½µÓêºódz²ã»¬Æµ÷²é¼°Ó°ÏìÒòËØ·ÖÎö[J].Ë®ÍÁ±£³Öѧ±¨,2022,36(5):44-50.
LI Yang,ZHANG Jian-jun,WEI Guang-kuo,et al.Investigation of Shallow Landslide After Extreme Rainfall and Analysis of Its Influencing Factors in the West Shanxi Loess Region[J].Journal of Soil and Water Conservation,2022,36(5):44-50.
[4] CHEN Y Y,MING D P,LING X,et al.Landslide Susceptibility Mapping Using Feature Fusion-based CPCNN-ML in Lantau Island,Hong Kong[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:3625-3639.
[5] GIORDAN D,LUZI G,MONSERRAT O,et al.Remote Sensing Analysis of Geologic Hazards[J].Remote Sensing,2022,14(19):4818.
[6] LI L P,LAN H X,GUO C B,et al.A Modified Frequency Ratio Method for Landslide Susceptibility Assessment[J].Landslides,2017,14(2):727-741.
[7] LAN H X,ZHOU C H,WANG L J,et al.Landslide Hazard Spatial Analysis and Prediction Using GIS in the Xiaojiang Watershed,Yunnan,China[J].Engineering Geology,2004,76(1/2):109-128.
[8] ÕÅ ÇÚ,°×Õýΰ,»Æ¹ÛÎÄ,µÈ.GNSS»¬Æ¼à²âÔ¤¾¯¼¼Êõ½øÕ¹[J].²â»æѧ±¨,2022,51(10):1985-2000.
ZHANG Qin,BAI Zheng-wei,HUANG Guan-wen,et al.Review of GNSS Landslide Monitoring and Early Warning[J].Acta Geodaetica et Cartographica Sinica,2022,51(10):1985-2000.
[9] Öì Îä,ÕÅ ÇÚ,Ö콨¾ü,µÈ.ÌØ´ó»¬ÆÂʵʱ¼à²âÔ¤¾¯Óë¼¼Êõ×°±¸Ñз¢[J].ÑÒÍÁ¹¤³Ìѧ±¨,2022,44(7):1341-1350.
ZHU Wu,ZHANG Qin,ZHU Jian-jun,et al.Real-time Monitoring and Early Warning Technology for Huge Landslides[J].Chinese Journal of Geotechnical Engineering,2022,44(7):1341-1350.
[10] HE F,TAN S C,LIU H J.Mechanism of Rainfall Induced Landslides in Yunnan Province Using Multi-scale Spatio-temporal Analysis and Remote Sensing Interpretation[J].Microprocessors and Microsystems,2022,90:104502.
[11] KEYPORT R N,OOMMEN T,MARTHA T R,et al.A Comparative Analysis of Pixel- and Object-based Detection of Landslides from Very High-resolution Images[J].International Journal of Applied Earth Observation and Geoinformation,2018,64:1-11.
[12] ¶¡ÓÀ»Ô,ÕÅ ÇÚ,Ñî³ÉÉú,µÈ.»ùÓڸ߷ÖÒ£¸ÐµÄ½ðɳ½­Á÷Óò»¬ÆÂʶ±ð:ÒÔ°ÍÌÁÏØÍõ´óÁú´åΪÀý[J].²â»æͨ±¨,2022(4):51-55.
DING Yong-hui,ZHANG Qin,YANG Cheng-sheng,et al.Landslide Identification in Jinsha River Basin Based on High-resolution Remote Sensing:Taking Wangdalong Village of Batang County as an Example[J].Bulletin of Surveying and Mapping,2022(4):51-55.
[13] ÑîÕÑÓ±,º«Áéâù,Ö£ÏòÏò,µÈ.»ùÓÚ¾í»ýÉñ¾­ÍøÂçµÄÒ£¸ÐÓ°Ïñ¼°DEM»¬ÆÂʶ±ð:ÒÔ»ÆÍÁ»¬ÆÂΪÀý[J].×ÔÈ»×ÊÔ´Ò£¸Ð,2022,34(2):224-230.
YANG Zhao-ying,HAN Ling-yi,ZHENG Xiang-xiang,et al.Landslide Identification Using Remote Sensing Images and DEM Based on Convolutional Neural Network:A Case Study of Loess Landslide[J].Remote Sensing for Natural Resources,2022,34(2):224-230.
[14] HACIEFENDIOGLU K,DEMIR G,BA ÿðþ ‰C AGA H B.Landslide Detection Using Visualization Techniques for Deep Convolutional Neural Network Models[J].Natural Hazards,2021,109(1):329-350.
[15] PANG D D,LIU G,HE J,et al.Automatic Remote Sensing Identification of Co-seismic Landslides Using Deep Learning Methods[J].Forests,2022,13(8):1213.
[16] ²ÌºÆ½Ü,º«º£»Ô,ÕÅÓêÁ«,µÈ.»ùÓÚµØÐÎÌØÕ÷Èںϵľí»ýÉñ¾­ÍøÂ绬ÆÂʶ±ð[J].µØÇò¿ÆѧÓë»·¾³Ñ§±¨,2022,44(3):568-579.
CAI Hao-jie,HAN Hai-hui,ZHANG Yu-lian,et al.Convolutional Neural Network Landslide Recognition Based on Terrain Feature Fusion[J].Journal of Earth Sciences and Environment,2022,44(3):568-579.
[17] Áõ ¼Ñ,ÎéÓîÃ÷,¸ß ÐÇ,µÈ.»ùÓÚGEEºÍU-NetÄ£Ð͵ÄͬÕð»¬ÆÂʶ±ð·½·¨[J].µØÇòÐÅÏ¢¿Æѧѧ±¨,2022,24(7):1275-1285.
LIU Jia,WU Yu-ming,GAO Xing,et al.Image Recog-nition of Co-seismic Landslide Based on GEE and U-Net Neural Network[J].Journal of Geo-information Science,2022,24(7):1275-1285.
[18] WANG H J,ZHANG L M,YIN K S,et al.Landslide Identification Using Machine Learning[J].Geoscience Frontiers,2021,12(1):351-364.
[19] Ôø ³¬,²ÜÕñÓî,ËÕ·ï»·,µÈ.ËÄ´¨¼°Öܱ߻¬ÆÂÄàʯÁ÷ÔÖº¦¸ß¾«¶Èº½¿ÕÓ°Ïñ¼°½âÒëÊý¾Ý¼¯(2008¡«2020Äê)[J].Öйú¿ÆѧÊý¾Ý,2022,7(2):195-205.
ZENG Chao,CAO Zhen-yu,SU Feng-huan,et al.A Dataset of High-precision Aerial Imagery and Interpretation of Landslide and Debris Flow Disaster in Sichuan and Surrounding Areas Between 2008 and 2020[J].China Scientific Data,2022,7(2):195-205.
[20] ÑÓê,ÕÔÏþÓÀ,Íõ ÀÚ.Êý¾Ý¹éÒ»»¯·½·¨×ÛÊö[J].¼ÆËã»ú¹¤³ÌÓëÓ¦ÓÃ,2023,59(3):13-22.
YANG Han-yu,ZHAO Xiao-yong,WANG Lei.Revi-ew of Data Normalization Methods[J].Computer Engineering and Applications,2023,59(3):13-22.
[21] ÕÅÍ¥è¤,ëÖÒ°²,ËïÔö»Û.»ùÓÚ¾¶Ïò»ùÉñ¾­ÍøÂçñîºÏÈ·¶¨ÐÔÖ¸ÊýµÄ»¬ÆÂÒ×·¢ÐÔ·ÖÇøÑо¿[J].³¤½­¿ÆѧԺԺ±¨,2021,38(11):64-72.
ZHANG Ting-yu,MAO Zhong-an,SUN Zeng-hui.Landslide Susceptibility Mapping Using Radial Basis Function Neural Network Coupling Certainty Factor[J].Journal of Yangtze River Scientific Research Institute,2021,38(11):64-72.
[22] HE K M,ZHANG X Y,REN S Q,et al.Deep Resi-dual Learning for Image Recognition[C]¡ÎIEEE.2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE,2016:770-778.
[23] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]¡ÎFERRARI V,HEBERT M,SMINCHISESCU C,et al.Computer Vision-ECCV 2018.Munich:Springer,2018:3-19.
[24] SHAO Z F,ZHOU Z F,HUANG X,et al.MRENet:Simultaneous Extraction of Road Surface and Road Centerline in Complex Urban Scenes from Very High-resolution Images[J].Remote Sensing,2021,13(2):239.

Memo

Memo:
-
Last Update: 2023-06-20