|Table of Contents|

Formation Age and Petrogenesis of Ebutu Cu-Ni Sulfide Deposit in Central Inner Mongolia, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第05期
Page:
1063-1079
Research Field:
庆贺汤中立院士从事地质工作七十周年专辑
Publishing date:

Info

Title:
Formation Age and Petrogenesis of Ebutu Cu-Ni Sulfide Deposit in Central Inner Mongolia, China
Author(s):
JIAO Jian-gang123 GUO Tian-mu1 YAN Xin-yun4 MA Yun-fei15 GAO Dong6
(1. School of Earth Science and Resources, Chang'an University, Xi'an 710054, Shaanxi, China; 2. Key Laboratory of Western China's Mineral Resources and Geological Engineering of Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China; 3. Xi'an Key Laboratory for Mineralization and Efficient Utilization of Critical Metals, Chang'an University, Xi'an 710054, Shaanxi, China; 4. Research Institute of Exploration and Development, Yumen Oilfield Company, PetroChina, Jiuquan 735000, Gansu, China; 5. Inner Mongolia Branch of China National Geological Exploration Center of Building Materials Industry, Hohhot 010010, Inner Mongolia, China; 6. School of Geographical Sciences, Lingnan Normal University, Zhanjiang 524048, Guangdong, China)
Keywords:
geochronology geochemistry petrogenesis Cu-Ni sulfide deposit mafic-ultramafic intrusion Inner Mongolia Central Asian Orogenic Belt
PACS:
P611.1+1
DOI:
10.19814/j.jese.2023.07050
Abstract:
The central region of Inner Mongolia that straddles across the Central Asian Orogenic Belt(CAOB)and the northern margin of the North China Block, widely develops magmatic Cu-Ni sulfide deposits(or occurrences). The Ebutu Cu-Ni sulfide deposit is one of the large scales and high-grade magmatic Cu-Ni sulfide deposits within this region. The plagioclase-bearing olivine pyroxenite of Ebutu Cu-Ni sulfide deposit was selected as the main research object by systematic mineralogy, petrography, mineralography, zircon U-Pb geochronology, petrogeochemistry and Sr-Nd isotopes to discuss the diagenetic and metallogenic age and petrogenesis of Ebutu mafic-ultramafic intrusions; based on the integration of regional geological data, the metallogenic potential of Ebutu Cu-Ni sulfide deposit was also briefly discussed, in order to provide suggestions for further breakthrough in Cu-Ni prospecting. The results show that the plagioclase-bearing olivine pyroxenite of Ebutu mafic-ultramafic intrusions yields a LA-ICP-MS zircon U-Pb weighted mean age of(326.0±2.1)Ma, belonging to the Early Carboniferous, indicating that it forms in an island arc setting during the Paleo-Asian ocean subducted to the North China Block. The plagioclase-bearing olivine pyroxenite showes SiO2 contents of 44.62%-55.81% with the average of 51.60%, MgO contents of 27.45%-33.10% with the average of 30.32%, and CaO contents of 1.15%-2.22% with the average of 1.61%. They are enrichment in light rare earth elements(LREE), depletion in heavy rare earth elements(HREE)and slightly negative Eu anomalies on the right-leaning chondrite-normalized REE pattern.(87Sr/86Sr)i,(143Nd/144Nd)i and εNd(t)values vary from 0.708 5 to 0.712 3 with the average of 0.710 6, from 0.511 7 to 0.511 8 with the average of 0.511 8 and from -10.57 to -8.07 with the average of -8.91, respectively. Based on the above studies, it is concluded that the parent magma of Ebutu mafic-ultramafic intrusion probably derives from the partial melting for the enriched lithospheric mantle interacted by the subducted slab-derived fluids. The primary magma is mainly high magnesium basaltic magma, which undergoes strong crustal contamination during the ascending emplacement process. Since the addition of the crustal sulfur and the contamination of silicon-rich crust, it results in sulfide segregation and mineralization. Combined with the regional geological data and the latest prospecting finding, it is considered that the deep and marginal part of Ebutu mafic-ultramafic intrusion has high exploration potential, and the next focus of mineral prospecting should be to clarify the direction of magma flow and to find the hidden intrusions and deep magma channel.

References:

[1] WINDLEY B F,ALEXEIEV D,XIAO W J,et al.Tectonic Models for Accretion of the Central Asian Orogenic Belt[J].Journal of the Geological Society,2007,164(1):31-47.
[2] XIAO W J,MAO Q G,WINDLEY B F,et al.Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage[J].American Journal of Science,2010,310(10):1553-1594.
[3] CUI M M,SU B X,WANG J,et al.Linking Selective Alteration,Mineral Compositional Zonation and Sulfide Melt Emplacement in Orogenic-type Magmatic Ni-Cu Sulfide Deposits[J].Journal of Petrology,2022,63(6):egac043.
[4] 焦建刚,徐铭池,周江迪,等.内蒙古中部克布铜镍硫化物矿床岩石成因与成矿过程[J].岩石学报,2023,39(4):1125-1143.
JIAO Jian-gang,XU Ming-chi,ZHOU Jiang-di,et al.Petrogenesis and Metallogenic Process of the Kebu Magmatic Cu-Ni Sulfide Deposit in the Central Inner Mongolia[J].Acta Petrologica Sinica,2023,39(4):1125-1143.
[5] XIAO W J,WINDLEY B F,HAO J,et al.Accretion Leading to Collision and the Permian Solonker Suture,Inner Mongolia,China:Termination of the Central Asian Orogenic Belt[J].Tectonics,2003,22(6):2002TC001484.
[6] PENG R M,ZHAI Y S,LI C S,et al.The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt:A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in an Arc Setting[J].Economic Geology,2013,108(8):1879-1888.
[7] CAO Y H,WANG C Y,WEI B,et al.Mantle Source and Magma Oxygen Fugacity of Permian Ni-Cu Sulfide-bearing Mafic-ultramafic Intrusions in the Inner Mongolia,North China:Controls on the Sulfide Saturation of Magmas in the Andean-style Continental Convergent Margins[J].Lithos,2021,390/391:106105.
[8] 暴宏天,王 焰,曹勇华,等.内蒙古中部二叠纪额布图岩体的橄榄石成分特征及其对辉石岩地幔源区的指示[J].大地构造与成矿学,2021,45(6):1185-1201.
BAO Hong-tian,WANG Yan,CAO Yong-hua,et al.Compositions of Olivine of Permian Erbutu Ultrama-fic Intrusion in the Central Asian Orogenic Belt(Inner Mongolia):Insights for the Pyroxenite Mantle Source[J].Geotectonica et Metallogenia,2021,45(6):1185-1201.
[9] 李志丹,王佳营,文思博,等.内蒙古乌拉特中旗克布镍矿地质特征及超基性—基性岩LA-ICP-MS锆石U-Pb年龄[J].矿物学报,2015,35(增1):130-131.
LI Zhi-dan,WANG Jia-ying,WEN Si-bo,et al.Geological Characteristics of Kebu Ni Deposit and LA-ICP-MS Zircon U-Pb Age of Ultrabasic Basic Rocks in Wulatezhongqi,Inner Mongolia[J].Acta Mineralo-gica Sinica,2015,35(S1):130-131.
[10] 党智财,李俊建,付 超,等.内蒙古乌拉特中旗克布镁铁质—超镁铁质岩体年代学、矿物学和岩石地球化学[J].地质学报,2018,92(2):278-297.
DANG Zhi-cai,LI Jun-jian,FU Chao,et al.Geochro-nological,Mineralogical and Lithogeochemical Studies of the Kebu Mafic-ultramafic Intrusion in Urad Middle Banner,Inner Mongolia[J].Acta Geologica Sinica,2018,92(2):278-297.
[11] SUN T,TAN S C,YANG S H,et al.Early Permian Subduction-related Ni-Cu Sulfide Mineralization in the Central Asian Orogenic Belt:A Case of the Halatumiao Deposit[J].Ore Geology Reviews,2021,130:103974.
[12] 王 倩.内蒙古乌拉特中旗温根A区镁铁—超镁铁质岩体成因及岩浆源区讨论[D].北京:中国地质大学,2010.
WANG Qian.Petrogenesis and Magma Source of Wengen A Mafic-ultramafic Intrusion,Inner Mongolia,China[D].Beijing:China University of Geoscien-ces,2010.
[13] 李志丹,朵兴芳,李效广,等.内蒙古达茂旗黄花滩铜镍矿辉长岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特征[J].地质通报,2020,39(4):491-502.
LI Zhi-dan,DUO Xing-fang,LI Xiao-guang,et al.Geochemical Characteristics,Zircon U-Pb Age and Hf Isotope of the Gabbro in the Huanghuatan Cu-Ni Deposit,Darhan Muminggan Joint Banner,Inner Mongolia[J].Geological Bulletin of China,2020,39(4):491-502.
[14] PENG R M,LI C S,ZHAI Y S,et al.Geochronology,Petrology and Geochemistry of the Beiligaimiao Magmatic Sulfide Deposit in a Paleozoic Active Continental Margin,North China[J].Ore Geology Reviews,2017,90:607-617.
[15] 方 曙.内蒙古自治区大地构造图说明书(1:1 500 000)[M].武汉:中国地质大学出版社,2017.
FANG Shu.Specification of Tectonic Map of Inner Mongolia(1:1 500 000)[M].Wuhan:China University of Geosciences Press,2017.
[16] 孙 涛,王登红,王 岩,等.中国地质矿产志:镍矿卷[M].北京:地质出版社,2019.
SUN Tao,WANG Deng-hong,WANG Yan,et al.Geology of Mineral Resources in China:Nickel Mining Volume[M].Beijing:Geological Publishing Hou-se,2019.
[17] 侯可军,李延河,田有荣,等.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
HOU Ke-jun,LI Yan-he,TIAN You-rong,et al.In-situ U-Pb Zircon Dating Using Laser Ablation-multion Counting-ICP-MS[J].Mineral Deposits,2009,28(4):481-492.
[18] JACKSON S E,PEARSON N J,GRIFFIN W L,et al.The Application of Laser Ablation-inductively Coupled-mass Spectrometry to In-situ U-Pb Zircon Geochronology[J].Chemical Geology,2004,211(1/2):47-69.
[19] LIU Y S,GAO S,HU Z C,et al.Continental and Ocea-nic Crust Recycling-induced Melt-peridotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J].Journal of Petrology,2010,51(1/2):537-571.
[20] LUDWIG K R.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[R].Berkeley:Berkeley Geochronology Center,2003.
[21] LI C F,CHU Z Y,GUO J H,et al.A Rapid Single Column Separation Scheme for High Precision Sr-Nd-Pb Isotopic Analysis in Geological Samples Using Thermal Ionization Mass Spectrometry[J].Analytical Methods,2015,7(11):4793-4802.
[22] LI C F,WANG X C,GUO J H,et al.Rapid Separation Scheme of Sr,Nd,Pb and Hf from a Single Rock Digest Using a Tandem Chromatography Column Prior to Isotope Ratio Measurements by Mass Spectro-metry[J].Journal of Analytical Atomic Spectrometry,2016,31(5):1150-1159.
[23] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
WU Yuan-bao,ZHENG Yong-fei.Genesis of Zircon and Its Constrains on Interpretation of U-Pb Age[J].Chinese Science Bulletin,49(16):1589-1604.
[24] 宫江华,王宗起,王东升,等.对超基性—基性岩中锆石成因、来源及其U-Pb年龄的探讨:以江南造山带西段为例[J].地质论评,2020,66(6):1536-1554.
GONG Jiang-hua,WANG Zong-qi,WANG Dong-sheng,et al.A Discussion on Genesis,Provenance and U-Pb Ages of the Zircons from Ultrabasic-basic Rocks:A Case Study in Western Jiangnan Orogenic Belt[J].Geological Review,2020,66(6):1536-1554.
[25] 赵鹤森,王庆飞,王彦宁,等.扬子西缘丹巴水子乡辉石岩年代学和岩石成因研究[J].岩石学报,2022,38(1):172-184.
ZHAO He-sen,WANG Qing-fei,WANG Yan-ning,et al.Geochronology and Petrogenesis of the Shuizi Pyroxenite at Danba,Western Yangtze Craton[J].Acta Petrologica Sinica,2022,38(1):172-184.
[26] WANG Q F,DENG J,LI G J,et al.Geochronological,Petrological,and Geochemical Studies of the Da-xueshan Magmatic Ni-Cu Sulfide Deposit in the Te-thyan Orogenic Belt,Southwest China[J].Economic Geology,2018,113(6):1307-1332.
[27] XUE S C,LI C S,WANG Q F,et al.Geochronology,Petrology and Sr-Nd-Hf-S Isotope Geochemistry of the Newly Discovered Qixin Magmatic Ni-Cu Sulfide Prospect,Southern Central Asian Orogenic Belt,NW China[J].Ore Geology Reviews,2019,111:103002.
[28] 吴利仁.论中国基性—超基性岩的成矿专属性[J].地质科学,1963,4(1):29-41.
WU Li-ren.On Metallogenic Specialization of Mafic and Ultramafic Rocks in China[J].Scientia Geologica Sinica,1963,4(1):29-41.
[29] SUN S S,MCDONOUGH W F.Chemical and Isoto-pic Systeamtics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313-345.
[30] XIE W,SONG X Y,DENG Y F,et al.Middle Cambrian to Permian Subduction-related Accretionary Orogenesis of Northern Xinjiang,NW China:Implications for the Tectonic Evolution of Central Asia[J].Lithos,2012,144/145:209-230.
[31] 张 旗.玻安岩和玻玄岩地球化学特征和成因的探讨[J].地球化学,1990,19(3):207-215.
ZHANG Qi.A Preliminary Study on the Geochemistry and Origin of Boninites and Boni-basalts[J].Geo-chimica,1990,19(3):207-215.
[32] ZHANG S H,ZHAO Y,KROENER A,et al.Early Permian Plutons from the Northern North China Block:Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt[J].International Journal of Earth Sciences,2009,98(6):1441-1467.
[33] WILSON M.Igneous Petrogenesis:A Global Tectonic Approach[M].Berlin:Springer,1989.
[34] ZHANG S H,ZHAO Y,LIU J M,et al.Different Sources Involved in Generation of Continental Arc Volcanism:The Carboniferous-Permian Volcanic Ro-cks in the Northern Margin of the North China Block[J].Lithos,2016,240/241/242/243:382-401.
[35] 刘 超,孙蓓蕾,吴 婧,等.内蒙古固阳地区早石炭世花岗岩的发现:来自SHRIMP锆石U-Pb年代学的证据[J].高校地质学报,2015,21(3):519-528.
LIU Chao,SUN Bei-lei,WU Jing,et al.Discovery of the Early Carboniferous Granite in Guyang,Inner Mongolia:Evidence from Zircon SHRIMP U-Pb Dating[J].Geological Journal of China Universities,2015,21(3):519-528.
[36] ZINDLER A,HART S.Chemical Geodynamics[J].Annual Review of Earth and Planetary Sciences,1986,14:493-571.
[37] 焦建刚,王 勇,钱壮志,等.新疆喀拉通克铜镍硫化物矿床Y9岩体年代学与成岩成矿机制探讨[J].矿床地质,2014,33(4):675-688.
JIAO Jian-gang,WANG Yong,QIAN Zhuang-zhi,et al.Tentative Discussion on Rock-forming and Ore-forming Mechanism of Kalatongke Cu-Ni Sulfide Deposit and Chronology of Kalatongke Y9 Intrusion[J].Mineral Deposits,2014,33(4):675-688.
[38] SONG X Y,LI X R.Geochemistry of the Kalatongke Ni-Cu-(PGE)Sulfide Deposit,NW China:Implications for the Formation of Magmatic Sulfide Mineralization in a Postcollisional Environment[J].Mineralium Deposita,2009,44(3):303-327.
[39] WEI B,WANG C Y,LI C,et al.Origin of PGE-depleted Ni-Cu Sulfide Mineralization in the Triassic Hong-qiling No.7 Orthopyroxenite Intrusion,Central Asian Orogenic Belt,Northeastern China[J].Economic Geo-logy,2013,108(8):1813-1831.
[40] CLASS C,LE ROEX A P.Ce Anomalies in Gough Island Lavas:Trace Element Characteristics of a Recycled Sediment Component[J].Earth and Planetary Science Letters,2008,265(3/4):475-486.
[41] 薛胜超,王庆飞,唐冬梅,等.造山带岩浆铜镍硫化物矿床的混染模式:以天山—北山二叠纪铜镍矿为例[J].矿床地质,2022,41(1):1-20.
XUE Sheng-chao,WANG Qing-fei,TANG Dong-mei,et al.Contamination Mechanism of Magmatic Ni-Cu Sulfide Deposits in Orogenic Belts:Examples from Permian Ni-Cu Deposits in Tianshan-Beishan[J].Mi-neral Deposits,2022,41(1):1-20.
[42] LANGMUIR C H,BENDER J F,BENCE A E,et al.Petrogenesis of Basalts from the Famous Area:Mid-Atlantic Ridge[J].Earth and Planetary Science Letters,1977,36(1):133-156.
[43] 张贵山,彭 仁,温汉捷,等.闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据[J].地球科学,2021,46(12):4230-4246.
ZHANG Gui-shan,PENG Ren,WEN Han-jie,et al.Genesis of E-MORB-like Mafic Dykes in Southwestern Fujian Province,SE China:Evidence from Geochemistry,Zircon U-Pb Geochronology and Sr-Nd Isotope[J].Earth Science,2021,46(12):4230-4246.
[44] HOFMANN A W.Chemical Differentiation of the Earth:The Relationship Between Mantle,Continental Crust,and Oceanic Crust[J].Earth and Planetary Science Letters,1988,90(3):297-314.
[45] WEDEPOHL K H.The Composition of the Continental Crust[J].Geochimica et Cosmochimica Acta,1995,59(7):1217-1232.
[46] SAUNDERS A D,NORRY M J,TARNEY J.Fluid Influence on the Trace Element Compositions of Subduction Zone Magmas[J].Philosophical Transactions of the Royal Society A,1991,335:377-392.
[47] MOHR P A.Crustal Contamination in Mafic Sheets:A Summary[C]∥HALLS H C,FAHRIG W C.Mafic Dyke Swarms.St.John's:Geological Association of Canada,1987:75-80.
[48] TAYLOR S R,MCLENNAN S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell,1985.
[49] HART S R.Heterogeneous Mantle Domains:Signatu-res,Genesis and Mixing Chronologies[J].Earth and Planetary Science Letters,1988,90(3):273-296.
[50] WEAVER B L.The Origin of Ocean Island Basalt End-member Compositions:Trace Element and Isotopic Constraints[J].Earth and Planetary Science Letters,1991,104(2/3/4):381-397.
[51] NEAL C R,MAHONEY J J,CHAZEY W J.Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:Results from ODP Leg 183[J].Journal of Petrology,2002,43(7):1177-1205.
[52] WOODHEAD J D,HERGT J M,DAVIDSON J P,et al.Hafnium Isotope Evidence for ‘Conservative' Element Mobility During Subduction Zone Processes[J].Earth and Planetary Science Letters,2001,192(3):331-346.
[53] ZHANG Z C,MAO J W,CHAI F M,et al.Geochemi-stry of the Permian Kalatongke Mafic Intrusions,Northern Xinjiang,Northwest China:Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits[J].Economic Geology,2009,104(2):185-203.
[54] 王 键,孙丰月,李碧乐,等.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景[J].地球科学,2016,41(5):792-808.
WANG Jian,SUN Feng-yue,LI Bi-le,et al.Age,Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige,Urad Zhongqi,Inner Mongolia[J].Earth Science,2016,41(5):792-808.
[55] LIGHTFOOT P C,KEAYS R R,MORRISON G G,et al.Geochemical Relationships in the Sudbury Igneous Complex:Origin of the Main Mass and Offset Di-kes[J].Economic Geology,1997,92(3):289-307.

Memo

Memo:
-
Last Update: 2023-10-15