|Table of Contents|

Mineralogical Characteristics of the Ore-bearing Clinopyroxenite in Shangzhuang P-REE(-Fe-Sc)Deposit of South Qilian, China and Their Constraints on Ore Genesis(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第05期
Page:
1094-1109
Research Field:
庆贺汤中立院士从事地质工作七十周年专辑
Publishing date:

Info

Title:
Mineralogical Characteristics of the Ore-bearing Clinopyroxenite in Shangzhuang P-REE(-Fe-Sc)Deposit of South Qilian, China and Their Constraints on Ore Genesis
Author(s):
WANG Jin-shou1 CHEN Xin2 ZHU Dan3 XUE Wan-wen1 JIN Ting-ting1 WANG Shu-lin1
(1. Key Laboratory of Geological Process and Mineral Resources of Northern Qinghai Tibetan Plateau, Qinghai Geological Survey Institute, Xining 810012, Qinghai, China; 2. School of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China; 3. Key Laboratory of Rare Earth and Scattered Minerals, Ministry of Natural Resources, Wuhan 430034, Hubei, China)
Keywords:
mineralogy clinopyroxenite deposit genesis EPMA P-REE(-Fe-Sc)deposit South Qilian
PACS:
P571; P611
DOI:
10.19814/j.jese.2023.07006
Abstract:
The Shangzhuang P-REE(-Fe-Sc)deposit is located in the ophiolitic melange zone in Lajishan area of South Qilian. The formation of the deposit is closely related to the melting and differentiation of mantle rocks, and the ore minerals are consistent with their host rock minerals, indicating the identity of diagenesis and mineralization, but there are still different understandings about whether the mineralization is caused by a single magma or hydrothermal fluid. Based on the mineralogical characteristics of biotite, magnetite and apatite, the genesis of ore-bearing apatite biotite clinopyroxenite was discussed by means of electron probe microanalysis(EPMA)and laser plasma mass spectrometer LA-ICP-MS in-situ analysis. The results show that the formation of magnetite and apatite from apatite biotite clinopyroxenite is earlier than that of biotite. Biotite is obviously brown polychrome, high in Al, K and Ti, moderately low in Fe(XFe is 0.42-0.46), Mg(XMg is 0.54-0.58), and poor in Ca and Na, indicating that it is of magmatic biotite; magnetite is generally high in V and Cr, low in Mg, and Ni/Cr ratio less than or equal to 1(except for one point), which is characterized by high V, Cr and Ti(partly low)of magmatic magnetite, and the magnetite may be an early crystalline mineral; apatite is fluorapatite with good crystallization degree, and BSE image does not find the holes, fissures, turbidity and darkness of hydrothermal apatite or metasomatized apatite by hydrothermal dissolution. It is high in F, poor in Cl, low in Cl/F ratio, high in total contents of rare earth elements((2 722-7 730)×10-6), and has obvious fractionation of light and heavy rare earth elements, indicating that it is typical magmatic apatite. Comprehensive study shows that Shangzhuang P-REE(-Fe-Sc)deposit is of magmatic genesis, and its diagenesis and mineralization may be related to partial melting and fractionation of mantle rocks. Under high temperature and oxidizing environment, the fluid rich in P, volatile F and a small amount of CO2-bearing, is an important geochemical factor controlling the enrichment and mineralization of ore-forming elements such as P, REE and Fe.

References:

[1] FRIETSCH R.On the Magmatic Origin of Iron Ores of the Kiruna Type[J].Economic Geology,1978,73(4):1949-1951.
[2] WILLIAMS P J,BARTON M D,JOHNSON D A,et al.Iron Oxide Copper-gold Deposits:Geology,Spa-ce-time Distribution,and Possible Modes of Origin[C]∥HEDENQUIST J W,THOMPSON J F H,GOLDFARB R J,et al.Economic Geology One Hundredth Anniversary Volume.Littleton:Society of Economic Geologists,2005:AV100.13.
[3] JONSSON E,TROLL V R,HÖGDAHL K,et al.Magmatic Origin of Giant ‘Kiruna-type' Apatite-iron-oxi-de Ores in Central Sweden[J].Scientific Reports,2013,3:1644.
[4] TAYLOR R D,SHAH A K,WALSH G J.Iron Oxi-de-apatite Waste Piles as Unconventional Rare Earth Element Resources in the Eastern Adirondack Highlands,New York[C]∥GSA.The 54th Annual GSA Northeastern Section Meeting.New York:GSA,2019:3-7.
[5] DILL H G.The “Chessboard” Classification Scheme of Mineral Deposits:Mineralogy and Geology from Aluminum to Zirconium[J].Earth-science Reviews,2010,100(1/2/3/4):1-420.
[6] HE X F,SANTOSH M,TSUNOGAE T,et al.Magnetite-apatite Deposit from Sri Lanka:Implications on Kiruna-type Mineralization Associated with Ultrama-fic Intrusion and Mantle Metasomatism[J].American Mineralogist,2018,103(1):26-38.
[7] HOPKINSON L,ROBERTS S.Ridge Axis Deformation and Coeval Melt Migration with Layer 3 Gabbros:Evidence from the Lizard Complex,U.K.[J].Contributions to Mineralogy and Petrology,1995,121(2):126-138.
[8] MITSIS I,ECONOMOU-ELIOPOULOS M.Occurr-ence of Apatite Associated with Magnetite in an Op-hiolite Complex(Othrys),Greece[J].American Mine-ralogist,2001,86(10):1143-1150.
[9] HERZ N,VALENTINE L B.Rutile in the Harford Country,Maryland,Serpentine Belt[R].Reston:US-GS,1970.
[10] GJATA K,SHALLO M,NEZIRAJ A,et al.Geologi-cal Section in Western Type Ophiolites[C]∥IUGS/UNESCO.Workshop on Albanian Ophiolites and Related Mineralization.Paris:IUGS/UNESCO,1995:121-138.
[11] TRAVISANY V,HENRIQUEZ F,NYSTROEM J O.Magnetite Lava Flows in the Pleito-Melon District of the Chilean Iron Belt[J].Economic Geology,1995,90(2):438-444.
[12] GEIJER P.The Kiruna Iron Ores[C]∥GRIP E.Sulphide and Iron Ores of Västerbotten and Lappland,Northern Sweden.Uppsala:Geological Survey of Sweden,1960:24-38.
[13] TORNOS F,VELASCO F,HANCHAR J M.Iron-ri-ch Melts,Magmatic Magnetite,and Superheated Hydrothermal Systems:The El Laco Deposit,Chile[J].Geology,2016,44(6):427-430.
[14] BARTON M D,JOHNSON D A.Evaporitic-source Model for Igneous-related Fe Oxide-(REE-Cu-Au-U)Mineralization[J].Geology,1996,24(3):259-262.
[15] SILLITOE R H.New Field Evidence Bearing on the Origin of the El Laco Magnetite Deposit,Northern Chile[J].Economic Geology,2002,97(5):1101-1109.
[16] POLLARD P J.An Intrusion-related Origin for Cu-Au Mineralization in Iron Oxide-copper-gold(IOCG)Provinces[J].Mineralium Deposita,2006,41(2):179-187.
[17] DARE S A S,BARNES S J,BEAUDOIN G.Did the Massive Magnetite “Lava Flows” of El Laco(Chile)Form by Magmatic or Hydrothermal Processes? New Constraints from Magnetite Composition by LA-ICP-MS[J].Mineralium Deposita,2015,50(5):607-617.
[18] DYMEK R F,OWENS B E.Petrogenesis of Apatite-rich Rocks(Nelsonites and Oxide-apatite Gabbrono-rites)Associated with Massif Anorthosites[J].Economic Geology,2001,96(4):797-815.
[19] ZHAO T P,CHEN W,ZHOU M F.Geochemical and Nd-Hf Isotopic Constraints on the Origin of the ~1.74 Ga Damiao Anorthosite Complex,North China Craton[J].Lithos,2009,113(3/4):673-690.
[20] CHEN W T,ZHOU M F,ZHAO T P.Differentiation of Nelsonitic Magmas in the Formation of the ~1.74 Ga Damiao Fe-Ti-P Ore Deposit,North China[J].Contributions to Mineralogy and Petrology,2013,165(6):1341-1362.
[21] 孙 静,杜维河,王德忠,等.河北承德大庙黑山钒钛磁铁矿矿床地质特征与成因探讨[J].地质学报,2009,83(9):1344-1364.
SUN Jing,DU Wei-he,WANG De-zhong,et al.Geological Characteristics and Genesis of the Heishan V-Ti Magnetite Deposit in Damiao,Chengde Hebei Pro-vince[J].Acta Geologica Sinica,2009,83(9):1344-1364.
[22] 李立兴,李厚民,陈正乐,等.河北承德黑山铁矿床热液成矿特征及流体包裹体特征[J].岩石学报,2010,26(3):858-870.
LI Li-xing,LI Hou-min,CHEN Zheng-le,et al.Hy-drothermal Mineralization and Fluid Inclusion Study on the Heishan Iron Deposit,Chengde County,Hebei Province,China[J].Acta Petrologica Sinica,2010,26(3):858-870.
[23] 杨合群.青海上庄岩浆型磷矿[J].西北地质,2020,53(3):209.
YANG He-qun.Shangzhuang Magmatic Phosphate Ore in Qinghai Province[J].Northwestern Geology,2020,53(3):209.
[24] 青海省自然资源厅.截至二〇二一年底青海省矿产资源储量简表[R].西宁:青海省自然资源厅,2022.
Department of Natural Resources of Qinghai Provin-ce.Summary of Mineral Resource Reserves of Qinghai Province by the End of 2021[R].Xining:Department of Natural Resources of Qinghai Province,2022.
[25] 王进寿,郑有业,吴正寿,等.青海拉脊山构造带钪矿床的发现[J].矿物学报,2015,35(增1):937.
WANG Jin-shou,ZHENG You-ye,WU Zheng-shou,et al.The Discovery of Scandium Deposit in the Laji-shan Ophiolitic Melange Belt in Qinghai Province[J].Acta Mineralogica Sinica,2015,35(S1):937.
[26] 邱家骧,曾广策,王思源,等.青海拉脊山造山带早古生代火山岩[J].西北地质科学,1995,16(1):69-83.
QIU Jia-xiang,ZENG Guang-ce,WANG Si-yuan,et al.Early Palaeozoic Volcanic Rocks in Laji Mountain Orogenetic Belt,Qinghai Province[J].Northwest Geoscience,1995,16(1):69-83.
[27] YANG W R,DENG Q L,WU X L.Major Characteri-stics of the Lajishan Orogenic Belt of the South Qilian Mountains and Its Geotectonic Attribute[J].Acta Geologica Sinica(English Edition),2002,76(1):110-117.
[28] 侯青叶,张宏飞,张本仁,等.祁连造山带中部拉脊山古地幔特征及其归属:来自基性火山岩的地球化学证据[J].地球科学,2005,30(1):61-70.
HOU Qing-ye,ZHANG Hong-fei,ZHANG Ben-ren,et al.Characteristics and Tectonic Affinity of Lajishan Paleo-mantle in Qilian Orogenic Belt:A Geochemical Study of Basalts[J].Earth Science,2005,30(1):61-70.
[29] 邱家骧,曾广策,王思源,等.拉脊山早古生代海相火山岩与成矿[M].武汉:中国地质大学出版社,1997.
QIU Jia-xiang,ZENG Guang-ce,WANG Si-yuan,et al.Early Paleozoic Marine Volcanic Rocks and Mineralization in Laji Mountains[M].Wuhan:China Univer-sity of Geosciences Press,1997.
[30] WANG M X,JIANG C Y,XIA M Z,et al.Petrogenesis of the Fe-P-REE Mineralized Shangzhuang Ultramafic Intrusion in the Lajishan Tectonic Belt,South Qilian Belt:Implications for Mantle Metasomatism and Tectonic Setting[J].Geological Journal,2017,52(S1):314-328.
[31] 王进寿,朱 丹,薛万文,等.青海上庄磷-稀土矿床矿物组成及稀土元素赋存状态研究[J].稀土,2023,DOI:10.16533/CNKI.15-1099/TF.20240011.
WANG Jin-shou,ZHU Dan,XUE Wan-wen,et al.Mineral Composition and Occurrence State of Rare Earth Elements in Shangzhuang Phosphorus-rare Earth Ore Deposit,Qinghai Province[J].Earth Rare,2023,DOI:10.16533/CNKI.15-1099/TF.20240011.
[32] WANG J S,CHEN X,XUE W W,et al.The Giant Shangzhuang REE-rich Apatite Deposit,Western China:Genesis by Ultramafic Magma Differentiation[J].Geological Journal,2023,58(10):3790-3805.
[33] BOTELHO N F,MOURA M A.Granite-ore Deposit Relationships in Central Brazil[J].Journal of South American Earth Sciences,1998,11(5):427-438.
[34] 余金杰,毛景文.宁芜玢岩铁矿磷灰石的稀土元素特征[J].矿床地质,2002,21(1):65-73.
YU Jin-jie,MAO Jing-wen.Rare Earth Elements in Apatite from Porphyrite Iron Deposits of Ningwu Area[J].Mineral Deposits,2002,21(1):65-73.
[35] 陈 伟,赵太平,魏庆国,等.河北大庙Fe-Ti-P矿床中铁钛磷灰岩的成因:来自磷灰石的证据[J].岩石学报,2008,24(10):2301-2312.
CHEN Wei,ZHAO Tai-ping,WEI Qing-guo,et al.Genesis of Nelsonite from the Damiao Fe-Ti-P Depo-sit,Hebei Province,China:Evidence from Apatite[J].Acta Petrologica Sinica,2008,24(10):2301-2312.
[36] 刘 峰,杨富全,李延河,等.新疆阿勒泰市阿巴宫铁矿磷灰石微量元素和稀土元素特征及矿床成因探讨[J].矿床地质,2009,28(3):251-264.
LIU Feng,YANG Fu-quan,LI Yan-he,et al.Trace Element and Rare Earth Element Characteristics of Apatite from Abagong Iron Deposit in Altay City,Xinjiang[J].Mineral Deposits,2009,28(3):251-264.
[37] 张乐骏,周涛发,范 裕,等.宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J].地质学报,2011,85(5):834-848.
ZHANG Le-jun,ZHOU Tao-fa,FAN Yu,et al.A LA-ICP-MS Study of Apatite from the Taocun Magnetite-apatite Deposit,Ningwu Basin[J].Acta Geolo-gica Sinica,2011,85(5):834-848.
[38] NADOLL P,ANGERER T,MAUK J L,et al.The Chemistry of Hydrothermal Magnetite:A Review[J].Ore Geology Reviews,2014,61:1-32.
[39] 李立兴,李厚民,陈振宇,等.冀北与角闪石岩相关铁钛磷灰岩的特征及成因:磷灰石矿物化学的证据[J].地质学报,2014,88(3):380-388.
LI Li-xing,LI Hou-min,CHEN Zhen-yu,et al.Occurrence and Genesis of Hornblendite-associated Nelsonite in Northern Hebei Province,China:Evidence from Apatite Geochemistry[J].Acta Geologica Sinica,2014,88(3):380-388.
[40] 佘宇伟,宋谢炎,于宋月,等.磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束[J].岩石学报,2014,30(5):1443-1456.
SHE Yu-wei,SONG Xie-yan,YU Song-yue,et al.The Compositions of Magnetite and Ilmenite of the Taihe Layered Intrusion,Sichuan Province:Constraints on the Formation of the P-Rich Fe-Ti Oxide Ores[J].Acta Petrologica Sinica,2014,30(5):1443-1456.
[41] 兰彩云,赵太平,罗正传,等.河南舞阳赵案庄铁矿床成因:来自磁铁矿和磷灰石的矿物学证据[J].岩石学报,2015,31(6):1653-1670.
LAN Cai-yun,ZHAO Tai-ping,LUO Zheng-zhuan,et al.The Genesis of the Zhaoanzhuang Fe Oxide Deposit in Wuyang Region of Henan Province:Insights from Magnetite and Apatite[J].Acta Petrologica Sinica,2015,31(6):1653-1670.
[42] 段 超,李延河,毛景文,等.宁芜和尚桥铁氧化物-磷灰石矿床(IOA)成矿过程研究:来自磁铁矿LA-ICP-MS原位分析的证据[J].岩石学报,2017,33(11):3471-3483.
DUAN Chao,LI Yan-he,MAO Jing-wen,et al.Study on the Ore-forming Process of the Heshangqiao IOA Deposit in the Ningwu Ore District:Insight from Magnetite LA-ICP-MS In-situ Analysis Data[J].Acta Petrologica Sinica,2017,33(11):3471-3483.
[43] 柴凤梅,李 永,王 雯,等.新疆阿尔泰巴斯铁列克钨多金属矿区花岗岩黑云母特征及成岩成矿意义[J].矿床地质,2023,42(1):1-21.
CHAI Feng-mei,LI Yong,WANG Wen,et al.Geochemical Characteristics of Biotite from Granites Around Bastielieke W-polymetallic Deposit in Altay,Xinjiang and Its Implication[J].Mineral Deposits,2023,42(1):1-21.
[44] 唐名鹰,丁正江,彭永和,等.柴北缘阿日特克山铜钼矿床成矿岩体中黑云母和角闪石矿物学特征及其指示意义[J].矿床地质,2023,42(2):253-266.
TANG Ming-ying,DING Zheng-jiang,PENG Yong-he,et al.Mineralogical Characteristics of Hornblendes and Biotites in Ore-forming Porphyry from Ariteke-shan Cu-Mo Deposit in Northern Qaidam Basin and Their Significance[J].Mineral Deposits,2023,42(2):253-266.
[45] 华洁文,周 云,刘奕志,等.滇东南个旧矿区花岗岩黑云母成分特征及其对锡成矿的指示[J].地质科学,2023,58(2):580-597.
HUA Jie-wen,ZHOU Yun,LIU Yi-zhi,et al.Compositional Characteristics of the Biotite from the Gejiu Mining Area of Southeast Yunnan and Its Implications for Tin Mineralization[J].Chinese Journal of Geology,2023,58(2):580-597.
[46] 徐志豪,闫国英,杨宗锋,等.白云鄂博矿床磁铁矿成分标型与深部富铁矿体预测[J].地学前缘,2023,30(2):426-439.
XU Zhi-hao,YAN Guo-ying,YANG Zong-feng,et al.Typomorphic Characteristics of Magnetite and Prediction of Deep Iron-rich Orebody in the Bayan Obo Ore Deposit[J].Earth Science Frontiers,2023,30(2):426-439.
[47] FU C L,YAN Z,AITCHISON J C,et al.Abyssal and Suprasubduction Peridotites in the Lajishan Ophiolite Belt:Implication for Initial Subduction of the Proto-Tethyan Ocean[J].The Journal of Geology,2019,127(4):393-410.
[48] SONG S G,NIU Y L,SU L,et al.Continental Orogenesis from Ocean Subduction,Continent Collision/Subduction,to Orogen Collapse,and Orogen Recyc-ling:The Example of the North Qaidam UHPM Belt,NW China[J].Earth-science Reviews,2014,129:59-84.
[49] 付长垒,闫 臻,郭现轻,等.拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J].岩石学报,2014,30(6):1695-1706.
FU Chang-lei,YAN Zhen,GUO Xian-qing,et al.Geochemistry and SHRIMP Zircon U-Pb Age of Diabases in the Lajishankou Ophiolitic Melange,South Qilian Terrane[J].Acta Petrologica Sinica,2014,30(6):1695-1706.
[50] 杨巍然,邓清禄,吴秀玲.拉脊山造山带断裂作用特征及与火山岩、蛇绿岩套的关系[J].地质科技情报,2000,19(2):5-11.
YANG Wei-ran,DENG Qing-lu,WU Xiu-ling.Faulting of Laji Orogenic Belt and Its Relationship to Volcanic Rocks and Ophiolites[J].Geological Science and Technology Information,2000,19(2):5-11.
[51] YAN Z,FU C L,AITCHISON J C,et al.Retro-foreland Basin Development in Response to Proto-Tethyan Ocean Closure,NE Tibet Plateau[J].Tectonics,2019,38(12):4229-4248.
[52] 崔加伟,郑有业,孙 祥,等.青海省赛支寺花岗闪长岩及其暗色包体成因:锆石 U-Pb 年代学、岩石地球化学和 Sr-Nd-Hf 同位素制约[J].地球科学,2016,41(7):1156-1170.
CUI Jia-wei,ZHENG You-ye,SUN Xiang,et al.Origin of Granodiorite and Mafic Microgranular Enclave in Saizhisi,Qinghai Province:Zircon U-Pb Geochronological,Geochemical and Sr-Nd-Hf Isotopic Cons-traints[J].Earth Science,2016,41(7):1156-1170.
[53] 王利民,陈 佩.陕西凤县九子沟岩体稀土钪赋存状态及成因浅析[J].西北地质,2020,53(3):86-92.
WANG Li-min,CHEN Pei.On the Occurrence and Genesis of Rare Earth and Scandium in Jiuzigou Rock Mass of Fengxian County,Shaanxi Province[J].Nor-thwestern Geology,2020,53(3):86-92.
[54] 西北地质科学研究所.青海上庄含磷超基性岩岩石特征的研究[R].西安:西北地质科学研究所,1973.
Northwest Institute of Geological Sciences.Study on Rock Characteristics of Phosphorus-bearing Ultrabasic Rocks in Shangzhuang,Qinghai[R].Xi'an:Northwest Institute of Geological Sciences,1973.
[55] 青海省地质调查局.青海省湟中县上庄磷矿区东段总结勘探地质报告[R].西宁:青海省地质调查局,1978.
Qinghai Geological Survey.Summary of Exploration Geological Report on the Eastern Section of Shangzhuang Phosphate Mining Area in Huangzhong County,Qinghai Province[R].Xining:Qinghai Geological Survey,1978.
[56] 杨生德,潘 彤,李世金,等.青海省磷矿资源潜力评价成果报告[R].西宁:青海省地质矿产勘查开发局,2011.
YANG Sheng-de,PAN Tong,LI Shi-jin,et al.Evalution Report on the Potential of Phosphate Mineral Resources in Qinghai Province[R].Xining:Bureau of Geological Exploration & Development of Qinghai Province,2011.
[57] 牛漫兰,文凤玲,闫 臻,等.南祁连拉脊山构造带早古生代岩浆混合作用:以马场岩体为例[J].岩石学报,2021,37(8):2364-2384.
NIU Man-lan,WEN Feng-ling,YAN Zhen,et al.Early Paleozoic Magma Mixing in the Lajishan Tectonic Belt of South Qilian:An Example from the Machang Pluton[J].Acta Petrologica Sinica,2021,37(8):2364-2384.
[58] GB/T 15617—2002,硅酸盐矿物的电子探针定量分析方法[S].
GB/T 15617—2002,Quantitative Analysis of Silicate Minerals by Electron Probe Microanalysis[S].
[59] 林文蔚,彭丽君.由电子探针分析数据估算角闪石、黑云母中的 Fe3+、Fe2+[J].长春地质学院学报,1994,24(2):155-162.
LIN Wen-wei,PENG Li-jun.The Estimation of Fe3+ and Fe2+ in Amphibole and Biotite from EMPA Data[J].Journal of Changchun University of Earth Scien-ces,1994,24(2):155-162.
[60] WONES D R,EUGSTER H P.Stability of Biotite:Experiment,Theory and Application[J].American Mineralogist,1965,50(9):1228-1272.
[61] NACHIT H,IBHI A,ABIA E H,et al.Discrimination Between Primary Magmatic Biotites,Reequilibrated Biotites and Neoformed Biotites[J].Comptes Rendus Geoscience,2005,337(16):1415-1420.
[62] KUMAR S,PATHAK M.Mineralogy and Geochemi-stry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya:Evidence of Bimodal Granitogeny and Tectonic Affinity[J].Journal of the Geological Society of India,2010,75(5):715-730.
[63] STONE D.Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks,Berens River Area,Northwest Superior Province,Ontario,Canada[J].The Canadian Mineralogist,2000,38(2):455-470.
[64] FOSTER M D.Interpretation of the Composition Trioctahedral Micas[R].Washington DC:United States Government Printing Office,1960.
[65] 张玉学.阳储岭斑岩钨钼矿床地质地球化学特征及其成因探讨[J].地球化学,1982,11(2):122-132,217.
ZHANG Yu-xue.Geological Characteristics and Origin of Yangchuling Porphyry W-Mo Deposit[J].Geo-chimica,1982,11(2):122-132,217.
[66] 刘 彬,马昌前,刘园园,等.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示[J].岩石矿物学杂志,2010,29(2):151-165.
LIU Bin,MA Chang-qian,LIU Yuan-yuan,et al.Mi-neral Chemistry of Biotites from the Tongshankou Cu-Mo Deposit:Implications for Petrogenesis and Mi-neralization[J].Acta Petrologica et Mineralogica,2010,29(2):151-165.
[67] 赵振华,严 爽.矿物:成矿与找矿[J].岩石学报,2019,35(1):31-68.
ZHAO Zhen-hua,YAN Shuang.Minerals and Relevant Metallogeny and Exploration[J].Acta Petrologica Sinica,2019,35(1):31-68.
[68] HENRY D J,GUIDOTTI C V,THOMSON J A.The Ti-saturation Surface for Low-to-medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-substitution Mechanisms[J].American Mine-ralogist,2005,90(2/3):316-328.
[69] PARSAPOOR A,KHALILI M,TEPLEY F,et al.Mi-neral Chemistry and Isotopic Composition of Magma-tic,Re-equilibrated and Hydrothermal Biotites from Darreh-Zar Porphyry Copper Deposit,Kerman(Southeast of Iran)[J].Ore Geology Reviews,2015,66:200-218.
[70] AZADBAKHT Z,LENTZ D R,MCFARLANE C R M,et al.Using Magmatic Biotite Chemistry to Differentiate Barren and Mineralized Silurian-Devonian Grani-toids of New Brunswick,Canada[J].Contributions to Mineralogy and Petrology,2020,175(7):69.
[71] 陈应华,蓝廷广,王 洪,等.莱芜张家洼铁矿磁铁矿LA-ICP-MS微量元素特征及其对成矿过程的制约[J].地学前缘,2018,25(4):32-49.
CHEN Ying-hua,LAN Ting-guang,WANG Hong,et al.LA-ICP-MS Trace Element Characteristics of Magnetite from the Zhangjiawa Iron Deposit,Laiwu and Constraints on Metallogenic Processes[J].Earth Science Frontiers,2018,25(4):32-49.
[72] BAILEY D K,KEARNS S.High-Ti Magnetite in Some Fine-grained Carbonatites and the Magmatic Implications[J].Mineralogical Magazine,2002,66(3):379-384.
[73] RAY G E,WEBSTER I C L.Geology and Chemistry of the Low Ti Magnetite Bearing Heff Cu-Au Skarn and Its Associated Plutonic Rocks,Heffley Lake,Sou-th Central British Columbia[J].Exploration and Mi-ning Geology,2007,16(3/4):159-186.
[74] DUPUIS C,BEAUDOIN G.Discriminant Diagrams for Iron Oxide Trace Element Finger Printing of Mineral Deposit Types[J].Mineralium Deposita,2011,46(4):319-335.
[75] SIEVWRIGHT R H,WILKINSON J J,O'NEILL H S,et al.Thermodynamic Controls on Element Partitioning Between Titanomagnetite and Andesitic-daci-tic Silicate Melts[J].Contributions to Mineralogy and Petrology,2017,172(8):62.
[76] DARE S A S,BARNES S J,BEAUDOIN G.Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid,Sudbury,Canada:Implications for Provenance Discrimination[J].Geo-chimica et Cosmochimica Acta,2012,88:27-50.
[77] GANINO C,ARNDT N T,ZHOU M F,et al.Inte-raction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion,SW China[J].Mineralium Deposita,2008,43(6):677-694.
[78] BUDDINGTON A F,LINDSLEY D H.Iron Titanium Oxide Minerals and Synthetic Equivalents[J].Journal of Petrology,1964,5(2):310-357.
[79] WEN G,LI J W,HOFSTRA A H,KOENIG A E,et al.Hydrothermal Reequilibration of Igneous Magnetite in Altered Granitic Plutons And Its Implications for Magnetite Classification Schemes:Insights from the Handan-Xingtai Iron District,North China Craton[J].Geochimical et Cosmochimica,2017,213:255-270.
[80] DARE S A S,BARNES S J,BEAUDOIN G,et al.Trace Elements in Magnetite as Petrogenetic Indicators[J].Mineralium Deposita,2014,49(7):785-796.
[81] ZHU C,SVERJENSKY D A.Partitioning of F-Cl-OH Between Minerals and Hydrothermal Fluids[J].Geo-chimica et Cosmochimica Acta,1991,55(7):1837-1858.
[82] IMAI A,LISTANCO E L,FUJII T.Petrologic and Sulfur Isotopic Significance of Highly Oxidized and Sulfur-rich Magma of Mt.Pinatubo,Philippines[J].Geology,1993,21(8):699-702.
[83] PENG G Y,LUHR J F,MCGEE J J.Factors Controlling Sulfur Concentrations in Volcanic Apatite[J].American Mineralogist,1997,82(11/12):1210-1224.
[84] PARAT F,HOLTZ F.Sulfur Partitioning Between Apatite and Melt and Effect of Sulfur on Apatite So-lubility at Oxidizing Conditions[J].Contributions to Mineralogy and Petrology,2004,147(2):201-212.
[85] WEBSTER J D,PICCOLI P M.Magmatic Apatite:A Powerful,Yet Deceptive,Mineral[J].Elements,2015,11(3):177-182.
[86] KONECKE B A,FIEGE A,SIMON A C,et al.Covariability of S6+,S4+,and S2+ in Apatite as a Function of Oxidation State:Implications for a New Oxybaro-meter[J].American Mineralogist,2017,102(3):548-557.
[87] FRIETSCH R,PERDAHL J A.Rare-earth Elements in Apatite and Magnetite in Kiruna-type Iron-ores and Some Other Iron-ore Types[J].Ore Geology Reviews,1995,9(6):489-510.
[88] BELOUSOVA E A,WALTERS S,GRIFFIN W L,et al.Trace Elements Signatures of Apatites in Grani-toids from the Mt.Isa Inlier,Northwestern Queens-land[J].Australian Journal of Earth Sciences,2001,48(4):603-619.
[89] CHU M F,WANG K L,GRIFFIN W L,et al.Apatite Composition:Tracing Petrogenetic Processes in Transhimalayan Granitoids[J].Journal of Petrology,2009,50(10):1829-1855.
[90] 邢 凯,舒启海.磷灰石在矿床学研究中的应用[J].矿床地质,2021,40(2):189-205.
XING Kai,SHU Qi-hai.Applications of Apatite in Study of Ore Deposits:A Review[J].Mineral Depo-sits,2021,40(2):189-205.
[91] POCHON A,POUJOL M,GLOAGUEN E,et al.U-Pb LA-ICP-MS Dating of Apatite in Mafic Rocks:Evidence for a Major Magmatic Event at the Devonian-Carboniferous Boundary in the Armorican Massif(France)[J].American Mineralogist,2016,101(11):2430-2442.
[92] PAN Y,FLEET M E.Compositions of the Apatite-group Minerals:Substitution Mechanisms and Controlling Factors[J].Reviews in Mineralogy and Geochemistry,2002,48(1):13-49.
[93] HUGHES J M,RAKOVAN J F.The Crystal Structure of Apatite,Ca5(PO4)3(F,OH,Cl)[J].Reviews in Mineralogy and Geochemistry,2002,48(1):1-12.
[94] HUGHES J M,RAKOVAN J F.Structurally Robust,Chemically Diverse:Apatite and Apatite Supergroup Minerals[J].Elements,2015,11(3):165-170.
[95] WEIDNER J R.Iron-oxide Magmas in the System Fe-C-O[J].Canadian Mineralogist,1982,20:555-566.
[96] TOPLIS M J,DINGWELL D B,LIBOUREL G.The Effect of Phosphorus on the Iron Redox Ratio,Viscosity,and Density of an Evolved Ferro Basalt[J].Contributions to Mineralogy and Petrology,1994,117(3):293-304.

Memo

Memo:
-
Last Update: 2023-10-15