|Table of Contents|

Sedimentary Environment and Accumulation Pattern of Organic Matter in Wufeng-Longmaxi Formations in the Southwestern Sichuan, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第05期
Page:
1227-1245
Research Field:
庆贺汤中立院士从事地质工作七十周年专辑
Publishing date:

Info

Title:
Sedimentary Environment and Accumulation Pattern of Organic Matter in Wufeng-Longmaxi Formations in the Southwestern Sichuan, China
Author(s):
CAO Guang-yao12 LIU Yu123* ZHOU Xiao-lin456 LI Yuan-chun12
(1. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 2. International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 3. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 4. Chengdu Center, China Geological Survey, Chengdu 610081, Sichuan, China; 5. Key Laboratory of Sedimentary Basin and Oil and Gas Resources of Ministry of Natural Resources, Chengdu 610081, Sichuan, China; 6. Sedimentary Geology Research Center, China Geological Survey, Chengdu 610081, Sichuan, China)
Keywords:
paleo-ocean sedimentary environment black shale Wufeng Formation Longmaxi Formation redox condition organic matter accumulation Sichuan
PACS:
P595; P618.13
DOI:
10.19814/j.jese.2022.11040
Abstract:
In order to find the evolution characteristic of sedimentary environment and main controlling factors of organic matter in Wufeng-Longmaxi Formations organic-rich shale in the southwestern Sichuan, the vertical variations of total organic carbon(TOC), and contents of major and trace elements in Wufeng-Longmaxi Formations in well YD1 were obtained by element geochemistry and organic geochemistry; and the paleo-environment evolution characteristic and organic matter accumulation mechanism of Wufeng-Longmaxi Formations were discussed. The results show that TOC of Longmaxi Formation with the average of 4.50% is higher than that of Wufeng Formation with the average of 1.26%. The geochemical indices(V/Cr, Corg/P, Mo content and Mo/TOC)indicate that the sedimentary environment of Wufeng-Longmaxi Formation is in a moderate to strong limitation, and the seawater undergoes from oxic-suboxic(the averages of V/Cr, Corg/P and Mo content of Wufeng Formation are 3.39, 138.16 and 4.28×10-6)to anoxic sulfide(the averages of V/Cr, Corg/P and Mo content of Longmaxi Formation are 6.71, 249.38 and 61.49×10-6). The paleoproductivity indices((Ni+Cu)/Al and contents of Ni and Babio)indicate that Wufeng-Longmaxi Formations have relatively high productivity levels, which is mainly attributed to the input of rich nutrients caused by frequent volcanic activities and the development of upwelling in the same period. According to the correlation analysis of TOC with continental input indices, redox indices and paleoproductivity indices, it is found that the organic matter accumulation of Wufeng and Longmaxi Formations are controlled by the redox conditions; organic preservation of Wufeng Formation is suppressed by oxic-suboxic condition; intense anoxic condition and high productivity contribute to the high organic matter content, making Longmaxi Formation conducive to shale gas development.

References:

[1] FINNEGAN S,BERGMANN K,EILER J M,et al.The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation[J].Science,2011,331:903-906.
[2] ALGEO T J,MARENCO P J,SALTZMAN M R,et al.Co-evolution of Oceans,Climate,and the Biosphere During the ‘Ordovician Revolution':A Review[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,458:1-11.
[3] HAMMARLUND E U,DAHL T W,HARPER D A T,et al.A Sulfidic Driver for the End-Ordovician Ma-ss Extinction[J].Earth and Planetary Science Letters,2012,331/332:128-139.
[4] YAN D T,CHEN D Z,WANG Q C,et al.Predominance of Stratified Anoxic Yangtze Sea Interrupted by Short-term Oxygenation During the Ordovician-Silurian Transition[J].Chemical Geology,2012,291:69-78.
[5] LI Y F,ZHANG T W,SHEN B J,et al.Carbon and Sulfur Isotope Variations Through the Upper Ordovician and Lower Silurian of South China Linked to Volcanism[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,567:110285.
[6] HARPER D A T,HAMMARLUND E U,RASMUSSEN C M O.End Ordovician EXtinctions:A Coincidence of Causes[J].Gondwana Research,2014,25(4):1294-1307.
[7] 戎嘉余,黄 冰.华南奥陶纪末生物大灭绝的肇端标志:腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布[J].地质学报,2019,93(3):509-527.
RONG Jia-yu,HUANG Bing.An Indicator of the Onset of the End Ordovician Mass Extinction in South China:The Manosiabrachiopod Assemblage and Its Diachronous Distribution[J].Acta Geologica Sinica,2019,93(3):509-527.
[8] LÜNING S,SHAHIN Y M,LOYDELL D,et al.Anatomy of a World-class Source Rock:Distribution and Depositional Model of Silurian Organic-rich Shales in Jordan and Implications for Hydrocarbon Potential[J].AAPG Bulletin,2005,89(10):1397-1427.
[9] 董大忠,施振生,管全中,等.四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J].天然气工业,2018,38(4):67-76.
DONG Da-zhong,SHI Zhen-sheng,GUAN Quan-zhong,et al.Progress,Challenges and Prospects of Shale Gas Exploration in the Wufeng-Longmaxi Reservoirs in the Sichuan Basin[J].Natural Gas Industry,2018,38(4):67-76.
[10] 王鹏万,邹 辰,李娴静,等.昭通示范区页岩气富集高产的地质主控因素[J].石油学报,2018,39(7):744-753.
WANG Peng-wan,ZOU Chen,LI Xian-jing,et al.Main Geological Controlling Factors of Shale Gas Enrichment and High Yield in Zhaotong Demonstration Area[J].Acta Petrolei Sinica,2018,39(7):744-753.
[11] LIU Q Y,LI P,JIN Z J,et al.Preservation of Organic Matter in Shale Linked to Bacterial Sulfate Reduction(BSR)and Volcanic Activity Under Marine and Lacustrine Depositional Environments[J].Marine and Petroleum Geology,2021,127:104950.
[12] 金之钧,胡宗全,高 波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.
JIN Zhi-jun,HU Zong-quan,GAO Bo,et al.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations,Southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23(1):1-10.
[13] 谢 忱,张金川,李玉喜,等.渝东南渝科1井下寒武统富有机质页岩发育特征与含气量[J].石油与天然气地质,2013,34(1):11-15.
XIE Chen,ZHANG Jin-chuan,LI Yu-xi,et al.Charac-teristics and Gas Content of the Lower Cambrian Dark Shale in Well Yuke-1,Southeast Chongqing[J].Oil & Gas Geology,2013,34(1):11-15.
[14] 郭少斌,王义刚.鄂尔多斯盆地石炭系本溪组页岩气成藏条件及勘探潜力[J].石油学报,2013,34(3):445-452.
GUO Shao-bin,WANG Yi-gang.Shale Gas Accumulation Conditions and Exploration Potential of Carboniferous Benxi Formation in Ordos Basin[J].Acta Petrolei Sinica,2013,34(3):445-452.
[15] TIAN H,LI T F,ZHANG T W,et al.Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin,Southwest China:Experimental Results and Geologi-cal Implications[J].International Journal of Coal Geo-logy,2016,156:36-49.
[16] LI Y F,ZHANG T,EILLS G S,et al.Depositional Environment and Organic Matter Accumulation of Upper Ordovician-Lower Silurian Marine Shale in the Upper Yangtze Platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:252-264.
[17] 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
ZHANG Shui-chang,ZHANG Bao-min,BIAN Li-zeng,et al.Development Constraints of Marine Source Rocks in China[J].Earth Science Frontiers,2005,12(3):39-48.
[18] 张春明,张维生,郭英海.川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J].地学前缘,2012,19(1):136-145.
ZHANG Chun-ming,ZHANG Wei-sheng,GUO Ying-hai.Sedimentary Environment and Its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou[J].Earth Science Frontiers,2012,19(1):136-145.
[19] WEI Y,LIU G D,BULSECO A,et al.Iron Speciation in Organic-rich Shales from the Upper Triassic Yanchang Formation,Ordos Basin,Northern China:Implications for Depositional Environment[J].Journal of Asian Earth Sciences,2021,220:104917.
[20] LU Y B,JIANG S,LU Y C,et al.Productivity or Pre-servation?The Factors Controlling the Organic Matter Accumulation in the Late Katian Through Hirnantian Wufeng Organic-rich Shale,South China[J].Marine and Petroleum Geology,2019,109:22-35.
[21] JIN C S,LIAO Z W,TANG Y J,et al.Sea-level Changes Control Organic Matter Accumulation in the Longmaxi Shales of Southeastern Chongqing,China[J].Marine and Petroleum Geology,2020,119:1044-78.
[22] TANG L,SONG Y,JIANG S,et al.Organic Matter Accumulation of the Wufeng-Longmaxi Shales in Southern Sichuan Basin:Evidence and Insight from Volcanism[J].Marine and Petroleum Geology,2020,120:104564.
[23] YANG S C,HU W X,YAO S P,et al.Constraints on the Accumulation of Organic Matter in Upper Ordovician-Lower Silurian Black Shales from the Lower Yangtze Region,South China[J].Marine and Petroleum Geology,2020,120:104544.
[24] YANG S C,HU W X,WANG X L,et al.Mechanism and Implications of Upwelling from the Late Ordovician to Early Silurian in the Yangtze Region,South China[J].Chemical Geology,2021,565:120074.
[25] ZHOU X L,LIU Y,CAO H Y,et al.Responses of Oceanic Chemistry to Climatic Perturbations During the Ordovician-Silurian Transition:Implications for Geochemical Proxies and Organic Accumulations[J].Marine and Petroleum Geology,2021,134:105341.
[26] 王 兴,田景春,林小兵,等.渝东地区五峰组—龙马溪组沉积环境及有机质主控因素分析:以接龙剖面为例[J].沉积学报,2022,DOI:10.14027/j.issn.1000-0550.2022.069.
WANG Xing,TIAN Jing-chun,LIN Xiao-bing,et al.Sedimentary Environment and Controlling Factors of Organic Matter Accmulation in Wufeng-Longmaxi Formations:A Case Study of Jielong Section in Eastern Chongqing[J].Acta Sedimentological Sinica,2022,DOI:10.14027/j.issn.1000-0550.2022.069.
[27] 连梦利,刘达东,林瑞钦,等.黔北地区五峰组—龙马溪组页岩沉积环境及有机质富集机理[J].中南大学学报(自然科学版),2022,53(9):3756-3772.
LIAN Meng-li,LIU Da-dong,LIN Rui-qin,et al.Sedimentary Environment and Organic Matter Enrichment Mechanism of Wufeng-Longmaxi Shale in the Northern Guizhou Area[J].Journal of Central South University(Science and Technology),2022,53(9):3756-3772.
[28] YAN C N,JIN Z J,ZHAO J H,et al.Influence of Se-dimentary Environment on Organic Matter Enrichment in Shale:A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin,China[J].Marine and Petroleum Geology,2018,92:880-894.
[29] ZHANG L C,XIAO D S,LU S F,et al.Effect of Se-dimentary Environment on the Formation of Organic-rich Marine Shale:Insights from Major/Trace Elements and Shale Composition[J].International Journal of Coal Geology,2019,204:34-50.
[30] 何登发,李德生,张国伟,等.四川多旋回叠合盆地的形成与演化[J].地质科学,2011,46(3):589-606.
HE Deng-fa,LI De-sheng,ZHANG Guo-wei,et al.Multicycle Superimposed Basin Form and Evolution of Sichuan Basin[J].Chinese Journal of Geology,2011,46(3):589-606.
[31] LIU S G,DENG B,JANSA L,et al.Multi-stage Basin Development and Hydrocarbon Accumulations:A Re-view of the Sichuan Basin at Eastern Margin of the Tibetan Plateau[J].Journal of Earth Science,2018,29(2):307-325.
[32] 万 方,许效松.川滇黔桂地区志留纪构造-岩相古地理[J].古地理学报,2003,5(2):180-186.
WANG Fang,XU Xiao-song.Tectonic-lithofacies Palaeogeography of the Silurian in Sichuan-Yunnan-Guizhou-Guangxi Region[J].Journal of Palaeogeography,2003,5(2):180-186.
[33] 梁狄刚,郭彤楼,边立曾,等.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J].海相油气地质,2009,14(2):1-19.
LIANG Di-gang,GUO Tong-lou,BIAN Li-zeng,et al.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions,Southern China(Part 3):Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks[J].Marine Origin Petroleum Geology,2009,14(2):1-19.
[34] 苏文博,李志明,ETTENSOHN F R,等.华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J].地球科学,2007,32(6):819-827.
SU Wen-bo,LI Zhi-ming,ETTENSOHN F R,et al.Distribution of Black Shale in the Wufeng-Longmaxi Formations(Ordovician-Silurian),South China:Major Controlling Factors and Implications[J].Earth Scien-ce,2007,32(6):819-827.
[35] 牟传龙,周恳恳,梁 薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.
MOU Chuan-long,ZHOU Ken-ken,LIANG Wei,et al.Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration[J].Acta Geologica Sinica,2011,85(4):526-532.
[36] 牟传龙,葛祥英,周恳恳,等.川西南晚奥陶世五峰期岩相古地理[J].中国地质,2015,42(1):192-198.
MOU Chuan-long,GE Xiang-ying,ZHOU Ken-ken,et al.Lithofacies Palaeogeography in Late Ordovician Wufeng Age in Southwestern Sichuan[J].Geology in China,2015,42(1):192-198.
[37] GB/T 19145—2003,沉积岩中总有机碳的测定[S].
GB/T 19145—2003,Determination of Total Organic Carbon in Sedimentary Rock[S].
[38] GB/T 14506.14—2010,硅酸盐岩石化学分析方法,第14部分:氧化亚铁量测定[S].
GB/T 14506.14—2010,Methods for Chemical Analysis of Silicate Rocks,Part 14:Determination of Ferrous Oxide Content[S].
[39] GB/T 14506.28—2010,硅酸盐岩石化学分析方法,第28部分:16个主次成分量测定[S].
GB/T 14506.28—2010,Methods for Chemical Analysis of Silicate Rocks,Part 28:Determination of 16 Major and Minor Elements Content[S].
[40] LIU Y,LI C,ALGEO T J,et al.Global and Regional Controls on Marine Redox Changes Across the Ordovician-Silurian Boundary in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,463:180-191.
[41] GB/T 14506.30—2010,硅酸盐岩石化学分析方法,第30部分:44个元素量测定[S].
GB/T 14506.30—2010,Methods for Chemical Analysis of Silicate Rocks,Part 30:Determination of 44 Elements[S].
[42] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1/2):12-32.
[43] LI T F,TIAN H,XIAO X M,et al.Geochemical Cha-racterization and Methane Adsorption Capacity of Overmature Organic-rich Lower Cambrian Shales in Northeast Guizhou Region,Southwest China[J].Marine and Petroleum Geology,2017,86:858-873.
[44] LI N,LI C,ALGEO T J,et al.Redox Changes in the Outer Yangtze Sea(South China)Through the Hirnantian Glaciation and Their Implications for the End-Ordovician Biocrisis[J].Earth-science Reviews,2021,212:103443.
[45] SCOTT C,LYONS T W.Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic Versus Non-euxinic Sediments and Sedimentary Rocks:Refining the Paleoproxies[J].Chemical Geology,2012,324/325:19-27.
[46] ALGEO T J,LI C.Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems[J].Geochimica et Cosmochimica Acta,2020,287:8-26.
[47] MCLENNAN S M.Relationships Between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust[J].Geochemistry,Geophysics,Geosystems,2001,2(4):2000GC000109.
[48] JONES B,MANNING D A C.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones[J].Chemical Geology,1994,111(1/2/3/4):111-129.
[49] ALGEO T J,INGALL E.Sedimentary Corg:P Ratios,Paleocean Ventilation,and Phanerozoic Atmospheric pO2[J].Palaeogeography,Palaeoclimatology,Palaeo-ecology,2007,256(3/4):130-155.
[50] KRAAL P,SLOMP C P,FORSTER A,et al.Phosphorus Cycling from the Margin to Abyssal Depths in the Proto-Atlantic During Oceanic Anoxic Event 2[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,295(1/2):42-54.
[51] WANG D S,LIU Y,ZHANG J C,et al.Controls on Marine Primary Productivity Variation and Organic Matter Accumulation During the Late Ordovician-Early Silurian Transition[J].Marine and Petroleum Geology,2022,142:105742.
[52] SCHOEPFER S D,SHEN J,WEI H Y,et al.Total Organic Carbon,Organic Phosphorus,and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity[J].Earth-science Reviews,2015,149:23-52.
[53] LITTLE S H,VANCE D,LYONS T W,et al.Controls on Trace Metal Authigenic Enrichment in Reducing Sediments:Insights from Modern Oxygen-deficient Settings[J].American Journal of Science,2015,315(2):77-119.
[54] SWEERE T,VAN DEN BOORN S,DICKSON A J,et al.Definition of New Trace Metal Proxies for the Controls on Organic Matter Enrichment in Marine Sediments Based on Mn,Co,Mo and Cd Concentrations[J].Chemical Geology,2016,441:235-245.
[55] ALGEO T J,LYONS T W.Mo-total Organic Carbon Covariation in Modern Anoxic Marine Environments:Implications for Analysis of Paleoredox and Paleohydrographic Conditions[J].Paleoceanography,2006,21(1):2004PA001112.
[56] MILLER C A,PEUCKER-EHRENBRINK B,WAL-KER B D,et al.Re-assessing the Surface Cycling of Molybdenum and Rhenium[J].Geochimica et Cosmochimica Acta,2011,75(22):7146-7179.
[57] ZHANG B L,YAO S P,WIGNALL P B,et al.Wide-spread Coastal Upwelling Along the Eastern Paleo-Tethys Margin(South China)During the Middle Permian(Guadalupian):Implications for Organic Matter Accumulation[J].Marine and Petroleum Geology,2018,97:113-126.
[58] CONWAY T M,JOHN S G.Biogeochemical Cycling of Cadmium Isotopes Along a High-resolution Section Through the North Atlantic Ocean[J].Geochimica et Cosmochimica Acta,2015,148:269-283.
[59] YARINCIK K M,MURRAY R W,PETERSON L C.Climatically Sensitive Eolian and Hemipelagic Deposition in the Cariaco Basin,Venezuela,over the Past 578 000 Years:Result from Al/Ti and K/Al[J].Paleoceanography,2000,15(2):210-228.
[60] CHEN L,ZHANG B M,CHEN X H,et al.Depositional Environment and Organic Matter Accumulation of the Lower Cambrian Shuijingtuo Formation in the Middle Yangtze Area,China[J].Journal of Petroleum Science and Engineering,2022,208:109339.
[61] RIMMER S M.Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales,Central Appalachian Basin(USA)[J].Chemical Geology,2004,206(3/4):373-391.
[62] GAO P,LI S J,LASH G,et al.Stratigraphic Framework,Redox History,and Organic Matter Accumulation of an Early Cambrian Intraplatfrom Basin on the Yangtze Platform,South China[J].Marine and Petroleum Geology,2021,130:105095.
[63] ZHOU L,ALGEO T J,SHEN J,et al.Changes in Marine Productivity and Redox Conditions During the Late Ordovician Hirnantian Glaciation[J].Palaeogeo-graphy,Palaeoclimatology,Palaeoecology,2015,420:223-234.

Memo

Memo:
-
Last Update: 2023-10-15