[1] FINNEGAN S,BERGMANN K,EILER J M,et al.The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation[J].Science,2011,331:903-906.
[2] ALGEO T J,MARENCO P J,SALTZMAN M R,et al.Co-evolution of Oceans,Climate,and the Biosphere During the ‘Ordovician Revolution':A Review[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,458:1-11.
[3] HAMMARLUND E U,DAHL T W,HARPER D A T,et al.A Sulfidic Driver for the End-Ordovician Ma-ss Extinction[J].Earth and Planetary Science Letters,2012,331/332:128-139.
[4] YAN D T,CHEN D Z,WANG Q C,et al.Predominance of Stratified Anoxic Yangtze Sea Interrupted by Short-term Oxygenation During the Ordovician-Silurian Transition[J].Chemical Geology,2012,291:69-78.
[5] LI Y F,ZHANG T W,SHEN B J,et al.Carbon and Sulfur Isotope Variations Through the Upper Ordovician and Lower Silurian of South China Linked to Volcanism[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,567:110285.
[6] HARPER D A T,HAMMARLUND E U,RASMUSSEN C M O.End Ordovician EXtinctions:A Coincidence of Causes[J].Gondwana Research,2014,25(4):1294-1307.
[7] 戎嘉余,黄 冰.华南奥陶纪末生物大灭绝的肇端标志:腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布[J].地质学报,2019,93(3):509-527.
RONG Jia-yu,HUANG Bing.An Indicator of the Onset of the End Ordovician Mass Extinction in South China:The Manosiabrachiopod Assemblage and Its Diachronous Distribution[J].Acta Geologica Sinica,2019,93(3):509-527.
[8] LÜNING S,SHAHIN Y M,LOYDELL D,et al.Anatomy of a World-class Source Rock:Distribution and Depositional Model of Silurian Organic-rich Shales in Jordan and Implications for Hydrocarbon Potential[J].AAPG Bulletin,2005,89(10):1397-1427.
[9] 董大忠,施振生,管全中,等.四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J].天然气工业,2018,38(4):67-76.
DONG Da-zhong,SHI Zhen-sheng,GUAN Quan-zhong,et al.Progress,Challenges and Prospects of Shale Gas Exploration in the Wufeng-Longmaxi Reservoirs in the Sichuan Basin[J].Natural Gas Industry,2018,38(4):67-76.
[10] 王鹏万,邹 辰,李娴静,等.昭通示范区页岩气富集高产的地质主控因素[J].石油学报,2018,39(7):744-753.
WANG Peng-wan,ZOU Chen,LI Xian-jing,et al.Main Geological Controlling Factors of Shale Gas Enrichment and High Yield in Zhaotong Demonstration Area[J].Acta Petrolei Sinica,2018,39(7):744-753.
[11] LIU Q Y,LI P,JIN Z J,et al.Preservation of Organic Matter in Shale Linked to Bacterial Sulfate Reduction(BSR)and Volcanic Activity Under Marine and Lacustrine Depositional Environments[J].Marine and Petroleum Geology,2021,127:104950.
[12] 金之钧,胡宗全,高 波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.
JIN Zhi-jun,HU Zong-quan,GAO Bo,et al.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations,Southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23(1):1-10.
[13] 谢 忱,张金川,李玉喜,等.渝东南渝科1井下寒武统富有机质页岩发育特征与含气量[J].石油与天然气地质,2013,34(1):11-15.
XIE Chen,ZHANG Jin-chuan,LI Yu-xi,et al.Charac-teristics and Gas Content of the Lower Cambrian Dark Shale in Well Yuke-1,Southeast Chongqing[J].Oil & Gas Geology,2013,34(1):11-15.
[14] 郭少斌,王义刚.鄂尔多斯盆地石炭系本溪组页岩气成藏条件及勘探潜力[J].石油学报,2013,34(3):445-452.
GUO Shao-bin,WANG Yi-gang.Shale Gas Accumulation Conditions and Exploration Potential of Carboniferous Benxi Formation in Ordos Basin[J].Acta Petrolei Sinica,2013,34(3):445-452.
[15] TIAN H,LI T F,ZHANG T W,et al.Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin,Southwest China:Experimental Results and Geologi-cal Implications[J].International Journal of Coal Geo-logy,2016,156:36-49.
[16] LI Y F,ZHANG T,EILLS G S,et al.Depositional Environment and Organic Matter Accumulation of Upper Ordovician-Lower Silurian Marine Shale in the Upper Yangtze Platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:252-264.
[17] 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
ZHANG Shui-chang,ZHANG Bao-min,BIAN Li-zeng,et al.Development Constraints of Marine Source Rocks in China[J].Earth Science Frontiers,2005,12(3):39-48.
[18] 张春明,张维生,郭英海.川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J].地学前缘,2012,19(1):136-145.
ZHANG Chun-ming,ZHANG Wei-sheng,GUO Ying-hai.Sedimentary Environment and Its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou[J].Earth Science Frontiers,2012,19(1):136-145.
[19] WEI Y,LIU G D,BULSECO A,et al.Iron Speciation in Organic-rich Shales from the Upper Triassic Yanchang Formation,Ordos Basin,Northern China:Implications for Depositional Environment[J].Journal of Asian Earth Sciences,2021,220:104917.
[20] LU Y B,JIANG S,LU Y C,et al.Productivity or Pre-servation?The Factors Controlling the Organic Matter Accumulation in the Late Katian Through Hirnantian Wufeng Organic-rich Shale,South China[J].Marine and Petroleum Geology,2019,109:22-35.
[21] JIN C S,LIAO Z W,TANG Y J,et al.Sea-level Changes Control Organic Matter Accumulation in the Longmaxi Shales of Southeastern Chongqing,China[J].Marine and Petroleum Geology,2020,119:1044-78.
[22] TANG L,SONG Y,JIANG S,et al.Organic Matter Accumulation of the Wufeng-Longmaxi Shales in Southern Sichuan Basin:Evidence and Insight from Volcanism[J].Marine and Petroleum Geology,2020,120:104564.
[23] YANG S C,HU W X,YAO S P,et al.Constraints on the Accumulation of Organic Matter in Upper Ordovician-Lower Silurian Black Shales from the Lower Yangtze Region,South China[J].Marine and Petroleum Geology,2020,120:104544.
[24] YANG S C,HU W X,WANG X L,et al.Mechanism and Implications of Upwelling from the Late Ordovician to Early Silurian in the Yangtze Region,South China[J].Chemical Geology,2021,565:120074.
[25] ZHOU X L,LIU Y,CAO H Y,et al.Responses of Oceanic Chemistry to Climatic Perturbations During the Ordovician-Silurian Transition:Implications for Geochemical Proxies and Organic Accumulations[J].Marine and Petroleum Geology,2021,134:105341.
[26] 王 兴,田景春,林小兵,等.渝东地区五峰组—龙马溪组沉积环境及有机质主控因素分析:以接龙剖面为例[J].沉积学报,2022,DOI:10.14027/j.issn.1000-0550.2022.069.
WANG Xing,TIAN Jing-chun,LIN Xiao-bing,et al.Sedimentary Environment and Controlling Factors of Organic Matter Accmulation in Wufeng-Longmaxi Formations:A Case Study of Jielong Section in Eastern Chongqing[J].Acta Sedimentological Sinica,2022,DOI:10.14027/j.issn.1000-0550.2022.069.
[27] 连梦利,刘达东,林瑞钦,等.黔北地区五峰组—龙马溪组页岩沉积环境及有机质富集机理[J].中南大学学报(自然科学版),2022,53(9):3756-3772.
LIAN Meng-li,LIU Da-dong,LIN Rui-qin,et al.Sedimentary Environment and Organic Matter Enrichment Mechanism of Wufeng-Longmaxi Shale in the Northern Guizhou Area[J].Journal of Central South University(Science and Technology),2022,53(9):3756-3772.
[28] YAN C N,JIN Z J,ZHAO J H,et al.Influence of Se-dimentary Environment on Organic Matter Enrichment in Shale:A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin,China[J].Marine and Petroleum Geology,2018,92:880-894.
[29] ZHANG L C,XIAO D S,LU S F,et al.Effect of Se-dimentary Environment on the Formation of Organic-rich Marine Shale:Insights from Major/Trace Elements and Shale Composition[J].International Journal of Coal Geology,2019,204:34-50.
[30] 何登发,李德生,张国伟,等.四川多旋回叠合盆地的形成与演化[J].地质科学,2011,46(3):589-606.
HE Deng-fa,LI De-sheng,ZHANG Guo-wei,et al.Multicycle Superimposed Basin Form and Evolution of Sichuan Basin[J].Chinese Journal of Geology,2011,46(3):589-606.
[31] LIU S G,DENG B,JANSA L,et al.Multi-stage Basin Development and Hydrocarbon Accumulations:A Re-view of the Sichuan Basin at Eastern Margin of the Tibetan Plateau[J].Journal of Earth Science,2018,29(2):307-325.
[32] 万 方,许效松.川滇黔桂地区志留纪构造-岩相古地理[J].古地理学报,2003,5(2):180-186.
WANG Fang,XU Xiao-song.Tectonic-lithofacies Palaeogeography of the Silurian in Sichuan-Yunnan-Guizhou-Guangxi Region[J].Journal of Palaeogeography,2003,5(2):180-186.
[33] 梁狄刚,郭彤楼,边立曾,等.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J].海相油气地质,2009,14(2):1-19.
LIANG Di-gang,GUO Tong-lou,BIAN Li-zeng,et al.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions,Southern China(Part 3):Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks[J].Marine Origin Petroleum Geology,2009,14(2):1-19.
[34] 苏文博,李志明,ETTENSOHN F R,等.华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J].地球科学,2007,32(6):819-827.
SU Wen-bo,LI Zhi-ming,ETTENSOHN F R,et al.Distribution of Black Shale in the Wufeng-Longmaxi Formations(Ordovician-Silurian),South China:Major Controlling Factors and Implications[J].Earth Scien-ce,2007,32(6):819-827.
[35] 牟传龙,周恳恳,梁 薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.
MOU Chuan-long,ZHOU Ken-ken,LIANG Wei,et al.Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration[J].Acta Geologica Sinica,2011,85(4):526-532.
[36] 牟传龙,葛祥英,周恳恳,等.川西南晚奥陶世五峰期岩相古地理[J].中国地质,2015,42(1):192-198.
MOU Chuan-long,GE Xiang-ying,ZHOU Ken-ken,et al.Lithofacies Palaeogeography in Late Ordovician Wufeng Age in Southwestern Sichuan[J].Geology in China,2015,42(1):192-198.
[37] GB/T 19145—2003,沉积岩中总有机碳的测定[S].
GB/T 19145—2003,Determination of Total Organic Carbon in Sedimentary Rock[S].
[38] GB/T 14506.14—2010,硅酸盐岩石化学分析方法,第14部分:氧化亚铁量测定[S].
GB/T 14506.14—2010,Methods for Chemical Analysis of Silicate Rocks,Part 14:Determination of Ferrous Oxide Content[S].
[39] GB/T 14506.28—2010,硅酸盐岩石化学分析方法,第28部分:16个主次成分量测定[S].
GB/T 14506.28—2010,Methods for Chemical Analysis of Silicate Rocks,Part 28:Determination of 16 Major and Minor Elements Content[S].
[40] LIU Y,LI C,ALGEO T J,et al.Global and Regional Controls on Marine Redox Changes Across the Ordovician-Silurian Boundary in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,463:180-191.
[41] GB/T 14506.30—2010,硅酸盐岩石化学分析方法,第30部分:44个元素量测定[S].
GB/T 14506.30—2010,Methods for Chemical Analysis of Silicate Rocks,Part 30:Determination of 44 Elements[S].
[42] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1/2):12-32.
[43] LI T F,TIAN H,XIAO X M,et al.Geochemical Cha-racterization and Methane Adsorption Capacity of Overmature Organic-rich Lower Cambrian Shales in Northeast Guizhou Region,Southwest China[J].Marine and Petroleum Geology,2017,86:858-873.
[44] LI N,LI C,ALGEO T J,et al.Redox Changes in the Outer Yangtze Sea(South China)Through the Hirnantian Glaciation and Their Implications for the End-Ordovician Biocrisis[J].Earth-science Reviews,2021,212:103443.
[45] SCOTT C,LYONS T W.Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic Versus Non-euxinic Sediments and Sedimentary Rocks:Refining the Paleoproxies[J].Chemical Geology,2012,324/325:19-27.
[46] ALGEO T J,LI C.Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems[J].Geochimica et Cosmochimica Acta,2020,287:8-26.
[47] MCLENNAN S M.Relationships Between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust[J].Geochemistry,Geophysics,Geosystems,2001,2(4):2000GC000109.
[48] JONES B,MANNING D A C.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones[J].Chemical Geology,1994,111(1/2/3/4):111-129.
[49] ALGEO T J,INGALL E.Sedimentary Corg:P Ratios,Paleocean Ventilation,and Phanerozoic Atmospheric pO2[J].Palaeogeography,Palaeoclimatology,Palaeo-ecology,2007,256(3/4):130-155.
[50] KRAAL P,SLOMP C P,FORSTER A,et al.Phosphorus Cycling from the Margin to Abyssal Depths in the Proto-Atlantic During Oceanic Anoxic Event 2[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,295(1/2):42-54.
[51] WANG D S,LIU Y,ZHANG J C,et al.Controls on Marine Primary Productivity Variation and Organic Matter Accumulation During the Late Ordovician-Early Silurian Transition[J].Marine and Petroleum Geology,2022,142:105742.
[52] SCHOEPFER S D,SHEN J,WEI H Y,et al.Total Organic Carbon,Organic Phosphorus,and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity[J].Earth-science Reviews,2015,149:23-52.
[53] LITTLE S H,VANCE D,LYONS T W,et al.Controls on Trace Metal Authigenic Enrichment in Reducing Sediments:Insights from Modern Oxygen-deficient Settings[J].American Journal of Science,2015,315(2):77-119.
[54] SWEERE T,VAN DEN BOORN S,DICKSON A J,et al.Definition of New Trace Metal Proxies for the Controls on Organic Matter Enrichment in Marine Sediments Based on Mn,Co,Mo and Cd Concentrations[J].Chemical Geology,2016,441:235-245.
[55] ALGEO T J,LYONS T W.Mo-total Organic Carbon Covariation in Modern Anoxic Marine Environments:Implications for Analysis of Paleoredox and Paleohydrographic Conditions[J].Paleoceanography,2006,21(1):2004PA001112.
[56] MILLER C A,PEUCKER-EHRENBRINK B,WAL-KER B D,et al.Re-assessing the Surface Cycling of Molybdenum and Rhenium[J].Geochimica et Cosmochimica Acta,2011,75(22):7146-7179.
[57] ZHANG B L,YAO S P,WIGNALL P B,et al.Wide-spread Coastal Upwelling Along the Eastern Paleo-Tethys Margin(South China)During the Middle Permian(Guadalupian):Implications for Organic Matter Accumulation[J].Marine and Petroleum Geology,2018,97:113-126.
[58] CONWAY T M,JOHN S G.Biogeochemical Cycling of Cadmium Isotopes Along a High-resolution Section Through the North Atlantic Ocean[J].Geochimica et Cosmochimica Acta,2015,148:269-283.
[59] YARINCIK K M,MURRAY R W,PETERSON L C.Climatically Sensitive Eolian and Hemipelagic Deposition in the Cariaco Basin,Venezuela,over the Past 578 000 Years:Result from Al/Ti and K/Al[J].Paleoceanography,2000,15(2):210-228.
[60] CHEN L,ZHANG B M,CHEN X H,et al.Depositional Environment and Organic Matter Accumulation of the Lower Cambrian Shuijingtuo Formation in the Middle Yangtze Area,China[J].Journal of Petroleum Science and Engineering,2022,208:109339.
[61] RIMMER S M.Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales,Central Appalachian Basin(USA)[J].Chemical Geology,2004,206(3/4):373-391.
[62] GAO P,LI S J,LASH G,et al.Stratigraphic Framework,Redox History,and Organic Matter Accumulation of an Early Cambrian Intraplatfrom Basin on the Yangtze Platform,South China[J].Marine and Petroleum Geology,2021,130:105095.
[63] ZHOU L,ALGEO T J,SHEN J,et al.Changes in Marine Productivity and Redox Conditions During the Late Ordovician Hirnantian Glaciation[J].Palaeogeo-graphy,Palaeoclimatology,Palaeoecology,2015,420:223-234.