|Table of Contents|

Airborne Transient Electromagnetic Noise Reduction Based on Curvelet Transform(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第05期
Page:
1270-1284
Research Field:
庆贺汤中立院士从事地质工作七十周年专辑
Publishing date:

Info

Title:
Airborne Transient Electromagnetic Noise Reduction Based on Curvelet Transform
Author(s):
LIN Kai-ru1 ZHANG Ji-feng123* ZHANG Fu-xiang1 SHI Yu1
(1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 2. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China; 3. Integrated Geophysical Simulation Laboratory, Chang'an University, Xi'an 710054, Shaanxi, China)
Keywords:
airborne transient electromagnetism curvelet transform noise reduction signal analysis noise interference fast discrete
PACS:
P631.3+25
DOI:
10.19814/j.jese.2023.02019
Abstract:
Noise interference seriously affects the data processing and imaging interpretation of aviation transient electromagnetic, and how to effectively denoise has become an important content of aviation transient electromagnetic research. Based on the characteristics of aviation transient electromagnetic noise and the multi-scale characteristics of curvelet transform, the second generation fast discrete curvelet transform(FDCT)was used to reconstruct and denoise actual aviation transient electromagnetic data. Firstly, a 3D theoretical model with anomalous bodies was established, and a direct time domain transient electromagnetic 3D simulation program was used for forward modeling. Then, three different types of noise, including random noise, square wave noise and industrial noise, were added to the theoretical electromagnetic response data, and images of different scales were generated through curvelet transform and reconstruction. Low scales reflect large background fields, while high scales reflect local details or high-frequency noise. Thirdly, the denoising effect of the reconstructed data was evaluated through parameters such as signal-to-noise ratio and relative error. Finally, the method was applied to the measured data of aviation transient electromagnetic and compared with several traditional denoising methods, including median filtering, singular value decomposition and wavelet transform. The results show that for the original data with random noise and industrial noise, the relative error after noise reduction is below 2.6%; for the original data with square wave noise, the relative error after noise reduction is below 6.5%, and the signal-to-noise ratio is also higher than traditional denoising methods, proving that the second generation curvelet transform can be applied to noise reduction of airborne transient electromagnetic data.

References:

[1] 薛国强,李 貅,底青云,等.瞬变电磁法理论与应用研究进展[J].地球物理学进展,2007,22(4):1195-1200.
XUE Guo-qiang,LI Xiu,DI Qing-yun,et al.The Progress of TEM in Theory and Application[J].Progress in Geophysics,2007,22(4):1195-1200.
[2] 牛之琏.时间域电磁法原理[M].长沙:中南大学出版社,2007.
NIU Zhi-lian.Principle of Time Domain Electromagnetic Method[M].Changsha:Central South Univer-sity Press,2007.
[3] 朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
PIAO Hua-rong.Principle of Electromagnetic Sounding Method[M].Beijing:Geological Publishing Hou-se,1990.
[4] 何腊梅.航空瞬变电磁数据时频分析及去噪方法研究[D].成都:成都理工大学,2013.
HE La-mei.The Research of Time-frequency Analysis and Denoising Method in Airborne Transient Electromagnetic Data Processing[D].Chengdu:Chengdu University of Technology,2013.
[5] 时圣利.瞬变电磁信号的几种去噪方法研究[D].长春:吉林大学,2008.
SHI Sheng-li.Study of Several Denoising Methods of Transient Electromagnetic Signal[D].Changchun:Jilin University,2008.
[6] 苏 扬,殷长春,刘云鹤,等.基于曲波变换的大地电磁二维稀疏正则化反演[J].地球物理学报,2021,64(1):314-326.
SU Yang,YIN Chang-chun,LIU Yun-he,et al.2D Magnetotelluric Sparse Regularization Inversion Based on Curvelet Transform[J].Chinese Journal of Geophy-sics,2021,64(1):314-326.
[7] 吕东伟.吊舱式时间域直升机航空电磁数据处理方法研究[D].成都:成都理工大学,2011.
LYU Dong-wei.Methods Study of Helicopter-borne Towed Bird Time Domain Electromagnetic Data Processing[D].Chengdu:Chengdu University of Techno-logy,2011.
[8] 高鹏举.基于核最小噪声分离的航空瞬变电磁去噪方法研究[D].西安:长安大学,2019.
GAO Peng-ju.Study on Airborne Transient Electromagnetic Method of Denoising Based on Kernel Minimum Noise Fraction[D].Xi'an:Chang'an University,2019.
[9] 李 杰.基于经验模态分解与独立成分分析的航空瞬变电磁去噪方法研究[D].西安:长安大学,2020.
LI Jie.Study on Airborne Transient Electromagnetic Method of Denoising Based on Empirical Mode Decomposition and Independent Component Analysis[D].Xi'an:Chang'an University,2020.
[10] 杨 洋,张 衡,周长宇,等.基于最小二乘反演的半航空瞬变电磁纯二次场数据运动噪声去除方法[J].地球物理学报,2022,65(6):2351-2364.
YANG Yang,ZHANG Heng,ZHOU Chang-yu,et al.Motion Noise Removal Method of Semi-airborne Transient Electromagnetic Pure Secondary Field Data Based on Least Square Inversion[J].Chinese Journal of Geophysics,2022,65(6):2351-2364.
[11] BAHAREH B,ABDOLRAHIM J,MJID N,et al.Mapping Channel Edges in Seismic Data Using Curvelet Transform and Morphological Filter[J].Journal of Applied Geophysics,2019,160:57-68.
[12] 王 宁,殷长春,高玲琦,等.基于曲波变换的航空电磁数据去噪方法研究[J].地球物理学报,2020,63(12):4592-4603.
WANG Ning,YIN Chang-chun,GAO Ling-qi,et al.Airborne EM Denoising Based on Curvelet Transform[J].Chinese Journal of Geophysics,2020,63(12):4592-4603.
[13] LIU Y H,FARQUHARSON C G,YIN C C,et al.Wavelet-based 3-D Inversion for Frequency-domain Airborne EM Data[J].Geophysical Journal International,2018,213(1):1-15.
[14] 包乾宗,陈文超,高静怀,等.基于第二代Curvelet变换的地震资料随机噪声衰减[J].煤田地质与勘探,2010,38(1):66-70.
BAO Qian-zong,CHEN Wen-chao,GAO Jing-huai,et al.Seismic Data Random Noise Attenuation Based on the Second Generation Curvelet Transform[J].Coal Geology & Exploration,2010,38(1):66-70.
[15] CANDÈS E,DEMANET L,DONOHO D,et al.Fast Discrete Curvelet Transforms[J].Multiscale Modeling & Simulation,2006,5(3):861-899.
[16] CANDÈS E,DONOHO D.Curvelets:A Surprisingly Effective Nonadaptive Representation of Objects with Edges[M].Nashville:Vanderbilt University Press,1999.
[17] 张 杨,王君恒,曹炼鹏,等.曲波变换在位场信号提取中的应用研究[J].物探与化探,2021,45(1):84-94.
ZHANG Yang,WANG Jun-heng,CAO Lian-peng,et al.A Study of the Application of Curvelet Transform in Potential Field Signal Extraction[J].Geophysical and Geochemical Exploration,2021,45(1):84-94.
[18] 高振兵.基于Curvelet变换的地震数据去噪方法[D].南昌:东华理工大学,2014.
GAO Zhen-bing.Denoising Method of Seismic Data Based on Curvelet Transform[D].Nanchang:East China University of Technology,2014.
[19] 陈载林,黄临平,陈玉梁,等.我国瞬变电磁法应用综述[J].铀矿地质,2010,26(1):51-54.
CHEN Zai-lin,HUANG Lin-ping,CHEN Yu-liang,et al.A Review on TEM Application in China[J].Uranium Geology,2010,26(1):51-54.
[20] 董烈乾,李振春,王德营,等.第二代Curvelet变换压制面波方法[J].石油地球物理勘探,2011,46(6):897-904.
DONG Lie-qian,LI Zhen-chun,WANG De-ying,et al.The Second Generation Curvelet Transform to Suppress Surface Wave Method[J].Oil Geophysical Pro-specting,2011,46(6):897-904.
[21] 齐少华,刘启元,陈九辉,等.接收函数的曲波变换去噪[J].地球物理学报,2016,59(3):884-896.
QI Shao-hua,LIU Qi-yuan,CHEN Jiu-hui,et al.Attenuation of Noise in Receiver Functions Using Curvelet Transform[J].Chinese Journal of Geophysics,2016,59(3):884-896.
[22] 李继伟,刘晓兵,周俊骅,等.基于能量比的Curvelet阈值迭代面波压制[J].石油地球物理勘探,2019,54(5):997-1004.
LI Ji-wei,LIU Xiao-bing,ZHOU Jun-hua,et al.Curvelet Threshold Iterative Surface Wave Suppression Based on Energy Ratio[J].Oil Geophysical Prospecting,2019,54(5):997-1004.
[23] 隋成兴.曲波变换在地震信号处理中的应用研究[D].西安:长安大学,2014.
SUI Cheng-xing.Study on the Applications of Curvelet Transform in Seismic Data Processing[D].Xi'an:Chang'an University,2014.
[24] HERRMANN F J,HENNENFENT G.Non-parametric Seismic Data Recovery with Curvelet Frames[J].Geophysical Journal International,2008,173(1):233-248.
[25] BÖRNER R U,ERNST O G,GÜTTEL S,et al.Th-ree-dimensional Transient Electromagnetic Modelling Using Rational Krylov Methods[J].Geophysical Jour-nal International,2015,202(3):2025-2043.
[26] 雷云山,王井富,胡永贵,等.基于曲波变换的混叠数据分离方法研究[C]∥中国石油学会石油物探专业委员会.2022年中国石油物探学术年会论文集.海口:中国石油学会石油物探专业委员会,2022:200-203.
LEI Yun-shan,WANG Jing-fu,HU Yong-gui,et al.Research on Aliasing Data Separation Method Based on Curvelet Transform[C]∥Specialized Committee of Petroleum Geophysical Exploration of Chinese Petroleum Society.Proceedings of the Chinese Petroleum Geophysical Exploration Academic Annual Meeting.Haikou:Specialized Committee of Petroleum Geophy-sical Exploration of Chinese Petroleum Society,2022:200-203.
[27] 张 帅,杨润海,张 演,等.一种基于曲波域的压缩感知降噪方法及其在水库气枪信号中的应用[J].地震研究,2022,45(3):441-451.
ZHANG Shuai,YANG Run-hai,ZHANG Yan,et al.Application of a Compressive Sensing Denoising Me-thod Based on Curve Wave Domain to Airgun Signals in Reservoirs[J].Journal of Seismological Research,2022,45(3):441-451.
[28] 曹静杰,杨志权,杨 勇,等.一种基于曲波变换的自适应地震随机噪声消除方法[J].石油物探,2018,57(1):72-78.
CAO Jing-jie,YANG Zhi-quan,YANG Yong,et al.An Adaptive Seismic Random Noise Elimination Me-thod Based on Curvelet Transform[J].Geophysical Prospecting for Petroleum,2018,57(1):72-78.
[29] UM E S,KIM S S,FU H H,et al.A Tetrahedral Me-sh Generation Approach for 3D Marine Controlled-source Electromagnetic Modeling[J].Computers & Geosciences,2017,100:1-9.
[30] 殷长春,黄 威,奔 放,等.时间域航空电磁系统瞬变全时响应正演模拟[J].地球物理学报,2013,56(9):3153-3162.
YIN Chang-chun,HUANG Wei,BEN Fang,et al.The Full-time Electromagnetic Modeling for Time-domain Airborne Electromagnetic Systems[J].Chinese Journal of Geophysics,2013,56(9):3153-3162.
[31] JI Y J,HU Y P,IMAMURA N,et al.Three-dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods[J].Pure and App-lied Geophysics,2017,174(5):2077-2088.
[32] 闫 述,陈明生,傅君眉,等.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275-284.
YAN Shu,CHEN Ming-sheng,FU Jun-mei,et al.Direct Time-domain Numerical Analysis of Transient Electromagnetic Fields[J].Chinese Journal of Geophysics,2002,45(2):275-284.
[33] SU Y,YIN C C,LIU Y H,et al.Sparse-promoting 3-D Airborne Electromagnetic Inversion Based on Sh-earlet Transform[J].Transactions on Geoscience and Remote Sensing,2022,60:5901713.
[34] 李肃义,林 君,阳贵红,等.电性源时域地空电磁数据小波去噪方法研究[J].地球物理学报,2013,56(9):3145-3152.
LI Su-yi,LIN Jun,YANG Gui-hong,et al.Ground-airborne Electromagnetic Signals Denoising Using a Combined Wavelet Transform Algorithm[J].Chinese Journal of Geophysics,2013,56(9):3145-3152.

Memo

Memo:
-
Last Update: 2023-10-15