|Table of Contents|

Review on the Application of Siderophores in Environmental Pollution and Resource Utilization(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第06期
Page:
1330-1340
Research Field:
环境与可持续发展
Publishing date:

Info

Title:
Review on the Application of Siderophores in Environmental Pollution and Resource Utilization
Author(s):
LI Yu-xia12 SONG Liu-ting12* ZHANG Ya-qin12 LIU Qi-yuan12 CHEN Hai-yang12 YANG Jie12 ZUO Rui12
(1. College of Water Sciences, Beijing Normal University, Beijing 100875, China; 2. Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China)
Keywords:
bioavailable iron siderophore pollution remediation biological control mineral dissolution plant growth-promotion heavy metal organic pollutant
PACS:
X50
DOI:
10.19814/j.jese.2023.04037
Abstract:
Although it is the fourth most abundant element in the Earth's crust, the bioavailability of iron is limited due to the formation of insoluble Fe(Ⅲ)(hydro)oxides under aerobic conditions. Microorganisms like bacteria, fungi and some plants have evolved mechanisms for iron acquisition, one of which is to secrete low molecular weight organic compound called siderophores. Recently, the application of siderophores in iron migration and transformation has aroused tremendous interest due to their ubiquitous presence in the surface environment. The types of siderophores and their detection methods, as well as their applications in the fields of mineral dissolution, pollution remediation, plant growth-promotion and biological control were systematically summarized. The results show that bacteria, fungi, cyanobacteria and plants can produce different types of siderophores, which take up and compete for iron from the environment through chelation. On the basis of the specific functional groups, siderophores can be qualitatively and quantitatively detected by biological and chemical methods. Siderophores can accelerate the dissolution of clay minerals and iron oxide/hydroxide minerals, and promote the biogeochemical cycle of different phases of iron in the surface environment. Siderophores can chelate a variety of heavy metal ions and promote the degradation of organic pollutants, which has great significance in the remediation of soil contaminated by heavy metal and organic matter, maintaining the good ecological function and agricultural production capacity of soil. Siderophores can also capture the nutrients required by plants and inhibit the growth of plant pathogens, play beneficial role in plant protection and growth, and effectively carry out biological control. In addition, prospects for future research trends on siderophores were included, with the aim to promote their developments in the fields of geology and environment.

References:

[1] LIU L L,WANG W,WU S H,et al.Recent Advances in the Siderophore Biology of Shewanella[J].Frontiers in Microbiology,2022,13:823758.
[2] LONGHINI C M,SÁ F,NETO R R.Review and Syn-thesis:Iron Input,Biogeochemistry,and Ecological Approaches in Seawater[J].Environmental Reviews,2019,27(2):125-137.
[3] 吴 内,严 康,汪海珍.基于Web of Science对铁载体研究现状和趋势的计量分析[J].环境科学学报,2023,43(5):471-485.
WU Nei,YAN Kang,WANG Hai-zhen.Bibliometric Analysis of Status and Trend of the Research on Siderophores Based on the Web of Science Database[J].Acta Scientiae Circumstantiae,2023,43(5):471-485.
[4] SCHWYN B,NEILANDS J B.Universal Chemical Assay for the Detection and Determination of Sidero-phores[J].Analytical Biochemistry,1987,160(1):47-56.
[5] HIDER R C,KONG X L.Chemistry and Biology of Siderophores[J].Natural Product Reports,2010,27(5):637-657.
[6] GHOSH S K,BERA T,CHAKRABARTY A M.Microbial Siderophore:A Boon to Agricultural Sciences[J].Biological Control,2020,144:104214.
[7] BOUKHALFA H,CRUMBLISS A L.Chemical Aspects of Siderophore Mediated Iron Transport[J].Biometals,2002,15(4):325-339.
[8] 张 莹,张文莉,陈小贝,等.细菌产铁载体的结构、功能及其研究进展[J].中国卫生检验杂志,2012,22(9):2249-2251.
ZHANG Ying,ZHANG Wen-li,CHEN Xiao-bei,et al.Structure,Function and Research Progress of Bacterial Siderophore[J].Chinese Journal of Health Laboratory Technology,2012,22(9):2249-2251.
[9] RAYMOND K N,DERTZ E A,KIM S S.Enterobactin:An Archetype for Microbial Iron Transport[J].PNAS,2003,100(7):3584-3588.
[10] WINKELMANN G.Microbial Siderophore-mediated Transport[J].Biochemical Society Transactions,2002,30(4):691-696.
[11] CSAKY T Z.On the Estimation of Bound Hydroxylamine in Biological Materials[J].Acta Chemica Scandinavica,1948,2:450-454.
[12] FINNIN M S,DONIGIAN J R,COHEN A,et al.Structures of a Histone Deacetylase Homologue Bound to the TSA and SAHA Inhibitors[J].Nature,1999,401:188-193.
[13] RASHMI V,SHYLAJANACIYAR M,RAJALAKSHMI R,et al.Siderophore Mediated Uranium Sequestration by Marine Cyanobacterium Synechococcus Elongatus BDU 130911[J].Bioresource Technology,2013,130:204-210.
[14] ARNOW L E.Colorimetric Determination of the Components of 3,4-Dihydroxyphenylalaninetyrosine Mixtures[J].Journal of Biological Chemistry,1937,118(2):531-537.
[15] BUTLER A,HARDER T,OSTROWSKI A D,et al.Photoactive Siderophores:Structure,Function and Biology[J].Journal of Inorganic Biochemistry,2021,221:111457.
[16] SHENKER M,OLIVER I,HELMANN M,et al.Utilization by Tomatoes of Iron Mediated by a Sidero-phore Produced by Rhizopus Arrhizus[J].Journal of Plant Nutrition,1992,15(10):2173-2182.
[17] FORESTER N T,LANE G A,STERINGA M,et al.Contrasting Roles of Fungal Siderophores in Maintaining Iron Homeostasis in Epichloë Festucae[J].Fungal Genetics and Biology,2018,111:60-72.
[18] KHAN A,SINGH P,SRIVASTAVA A.Synthesis,Nature and Utility of Universal Iron Chelator-sidero-phore:A Review[J].Microbiological Research,2018,212/213:103-111.
[19] HAAS H.Fungal Siderophore Metabolism with a Focus on Aspergillus Fumigatus[J].Natural Product Reports,2014,31(10):1266-1276.
[20] SHCOLNICK S,KEREN N.Metal Homeostasis in Cyanobacteria and Chloroplasts.Balancing Benefits and Risks to the Photosynthetic Apparatus[J].Plant Phy-siology,2006,141(3):805-810.
[21] KUNDU K,TETA R,ESPOSITO G,et al.A Four-step Platform to Optimize Growth Conditions for Hi-gh-yield Production of Siderophores in Cyanobacteria[J].Metabolites,2023,13(2):154.
[22] SINGH A,KAUSHIK M S,SRIVASTAVA M,et al.Siderophore Mediated Attenuation of Cadmium Toxi-city by Paddy Field Cyanobacterium Anabaena Ory-zae[J].Algal Research,2016,16:63-68.
[23] DE SARKAR S,BLOM J F,BETHUEL Y,et al.Al-lelopathic Activity of the Iron Chelator Anachelin:A Molecular Hybrid with a Dual Mode of Action[J].Helvetica Chimica Acta,2016,99(10):760-773.
[24] MOLNÁR Z,SOLOMON W,MUTUM L,et al.Understanding the Mechanisms of Fe Deficiency in the Rhizosphere to Promote Plant Resilience[J].Plants,2023,12(10):1945.
[25] SINGH J S,PANDEY V C,SINGH D P.Efficient Soil Microorganisms:A New Dimension for Sustainable Agriculture and Environmental Development[J].Agriculture,Ecosystems & Environment,2011,140(3/4):339-353.
[26] KRATENA N,GÖKLER T,MALTROVSKY L,et al.A Unified Approach to Phytosiderophore Natural Products[J].Chemistry:A European Journal,2021,27(2):577-580.
[27] SUZUKI M,URABE A,SASAKI S,et al.Development of a Mugineic Acid Family Phytosiderophore Analog as an Iron Fertilizer[J].Nature Communications,2021,12:1558.
[28] MURAKAMI C,TANAKA A R,SATO Y,et al.Ea-sy Detection of Siderophore Production in Diluted Growth Media Using an Improved CAS Reagent[J].Journal of Microbiological Methods,2021,189:106310.
[29] GU S H,WAN W,SHAO Z Y,et al.High-throughput Method for Detecting Siderophore Production by Rhizosphere Bacteria[J].Bio-protocol,2021,11(9):e4001.
[30] SHIRVANI M,NOURBAKHSH F.Desferrioxamine-B Adsorption to and Iron Dissolution from Palygorskite and Sepiolite[J].Applied Clay Science,2010,48(3):393-397.
[31] KIMURA T,FUKUTANI S,IKEGAMI M,et al.Ef-fect of Bacterial Siderophore on Cesium Dissolution from Biotite[J].Chemosphere,2021,276:130121.
[32] PARRELLO D,ZEGEYE A,MUSTIN C,et al.Side-rophore-mediated Iron Dissolution from Nontronites Is Controlled by Mineral Cristallochemistry[J].Frontiers in Microbiology,2016,7:423.
[33] 毛欣欣,何琳燕,王 琪,等.具矿物风化效应伯克霍尔德氏菌的筛选与生物学特性研究[J].土壤,2017,49(1):77-82.
MAO Xin-xin,HE Lin-yan,WANG Qi,et al.Isolation of Mineral-weathering Burkholderia Strains and Th-eir Biological Characteristics[J].Soils,2017,49(1):77-82.
[34] TORRES M A,DONG S J,NEALSON K H,et al.The Kinetics of Siderophore-mediated Olivine Dissolution[J].Geobiology,2019,17(4):401-416.
[35] DUCKWORTH O W,BARGAR J R,SPOSITO G.Coupled Biogeochemical Cycling of Iron and Manganese as Mediated by Microbial Siderophores[J].BioMetals,2009,22(4):605-613.
[36] BUSS H L,LÜTTGE A,BRANTLEY S L.Etch Pit Formation on Iron Silicate Surfaces During Sideropho-re-promoted Dissolution[J].Chemical Geology,2007,240(3/4):326-342.
[37] REICHARD P U,KRAEMER S M,FRAZIER S W,et al.Goethite Dissolution in the Presence of Phytosiderophores:Rates,Mechanisms,and the Synergistic Effect of Oxalate[J].Plant and Soil,2005,276(1):115-132.
[38] DA COSTA J,COHEN D R,MAGALHÃES M C F,et al.Siderophore-assisted Dissolution of Iron(Ⅲ)Hydroxide Oxides from Iron-rich Fossil Matrices[J].ChemPlusChem,2020,85(8):1747-1753.
[39] AHMED E,HOLMSTRÖM S J M.Siderophores in Environmental Research:Roles and Applications[J].Microbial Biotechnology,2014,7(3):196-208.
[40] SAAD E M,SUN J Y,CHEN S,et al.Siderophore and Organic Acid Promoted Dissolution and Transformation of Cr(Ⅲ)-Fe(Ⅲ)-(Oxy)Hydroxides[J].Environmental Science and Technology,2017,51(6):3223-3232.
[41] SAAD E M,WANG X L,PLANAVSKY N J,et al.Redox-independent Chromium Isotope Fractionation Induced by Ligand-promoted Dissolution[J].Nature Communications,2017,8:1590.
[42] JOHNSTONE T C,NOLAN E M.Beyond Iron:Non-classical Biological Functions of Bacterial Sideropho-res[J].Dalton Transactions,2015,44(14):6320-6339.
[43] 王东升.产铁载体菌的筛选及其对龙葵吸收土壤Cd促进效应的研究[D].广州:暨南大学,2019.
WANG Dong-sheng.The Screening of Siderophore-producing Bacteria and Its Enhancing Effect on Remediation of Cadmium-contaminated Soil by Solanum Nigrum L[D].Guangzhou:Jinan University,2019.
[44] 王亚军,冯炬威,李雅倩,等.高产铁载体菌Burkhol-deria Vietnamiensis YQ9促生特性研究及其对重金属胁迫条件下种子萌发的影响[J].环境科学学报,2022,42(2):430-437.
WANG Ya-jun,FENG Ju-wei,LI Ya-qian,et al.Stu-dies on Growth-promoting Properties of an Efficient Siderophore Producing Bacterium,Burkholderia Vietnamiensis YQ9,and Its Effects on Seed Germination Under Heavy Metal Stress[J].Acta Scientiae Circumstantiae,2022,42(2):430-437.
[45] TANG Y K,KANG H Y,QIN Z Y,et al.Significance of Manganese Resistant Bacillus Cereus Strain WSE-01 as a Bioinoculant for Promotion of Plant Growth and Manganese Accumulation in Myriophyllum Verticillatum[J].Science of the Total Environment,2020,707:135867.
[46] KUMAR A,TRIPTI,MALEVA M,et al.Synergistic Effect of ACC Deaminase Producing Pseudomonas sp.TR15a and Siderophore Producing Bacillus Aero-philus TR15c for Enhanced Growth and Copper Accumulation in Helianthus Annuus L[J].Chemosp-here,2021,276:130038.
[47] JUNPRADIT C,THOOPPENG P,DUANGMAL K,et al.Influence of Cadmium-resistant Streptomycetes on Plant Growth and Cadmium Uptake by Chlorophytum Comosum(Thunb.)Jacques[J].Environmental Science and Pollution Research,2021,28(29):39398-39408.
[48] BRAUD A,HOEGY F,JEZEQUEL K,et al.New Insights into the Metal Specificity of the Pseudomonas Aeruginosa Pyoverdine-iron Uptake Pathway[J].Environmental Microbiology,2009,11(5):1079-1091.
[49] HARRINGTON J M,DUCKWORTH O W,HASELWANDTER K.The Fate of Siderophores:Antagonistic Environmental Interactions in Exudate-mediated Micronutrient Uptake[J].BioMetals,2015,28(3):461-472.
[50] BANERJEE S,KAMILA B,BARMAN S,et al.Interlining Cr(Ⅵ)Remediation Mechanism by a Novel Bacterium Pseudomonas Brenneri Isolated from Coal-mine Wastewater[J].Journal of Environmental Mana-gement,2019,233(1):271-282.
[51] KRAEMER D,FREI R,VIEHMANN S,et al.Mobilization and Isotope Fractionation of Chromium During Water-rock Interaction in Presence of Sideropho-res[J].Applied Geochemistry,2019,102(1):44-54.
[52] EDWARDS S,ANDRIEUX F,BOXALL C,et al.Neptunium(Ⅳ)-hydroxamate Complexes:Their Speciation,and Kinetics and Mechanism of Hydrolysis[J].Dalton Transactions,2019,48(2):673-687.
[53] SUZUKI M,TAKAHASHI M,TSUKAMOTO T,et al.Biosynthesis and Secretion of Mugineic Acid Family Phytosiderophores in Zinc-deficient Barley[J].The Plant Journal,2006,48(1):85-97.
[54] XU Y C,LI N,YAN X F,et al.DFT-based Analysis of Siderophore-metal Ion Interaction for Efficient Heavy Metal Remediation[J].Environmental Science and Pollution Research,2023,30(40):91780-91793.
[55] 王赛怡,王逸君,赵亚洲,等.土壤重金属污染及其植物修复研究进展[J].农学学报,2023,13(2):20-23,32.
WANG Sai-yi,WANG Yi-jun,ZHAO Ya-zhou,et al.Research Advances in Soil Heavy Metal Pollution and Its Phytoremediation[J].Journal of Agriculture,2023,13(2):20-23,32.
[56] 张馥颖,许 明,周增幸,等.长三角工业园区土壤中多环芳烃和邻苯二甲酸酯的污染现状及来源解析[J].生态与农村环境学报,2023,39(8):1077-1085.
ZHANG Fu-ying,XU Ming,ZHOU Zeng-xing,et al.Pollution Status and Sources of Polycyclic Aromatic Hydrocarbons and Phthalates in Soil of Industrial Parks in Yanngtze River Delta[J].Journal of Ecology and Rural Environment,2023,39(8):1077-1085.
[57] 林超霸,张馥颖,朱雪竹,等.我国农业土壤及农作物中多环芳烃污染特征与来源[J].生物加工过程,2021,19(4):440-447.
LIN Chao-ba,ZHANG Fu-ying,ZHU Xue-zhu,et al.Characteristics and Sources of Polycyclic Aromatic Hydrocarbons Contaminations in Agricultural Soils and Crops in China[J].Chinese Journal of Bioprocess Engineering,2021,19(4):440-447.
[58] MARTINEZ J S,BUTLER A.Marine Amphiphilic Siderophores:Marinobactin Structure,Uptake,and Microbial Partitioning[J].Journal of Inorganic Bioche-mistry,2007,101(11/12):1692-1698.
[59] 白 净,徐晓芳,黄文慧,等.细菌在多环芳烃降解中的应用及修复增效策略[J].环境科学与技术,2023,46(2):202-214.
BAI Jing,XU Xiao-fang,HUANG Wen-hui,et al.Application of Bacteria in the Degradation of Polycyclic Aromatic Hydrocarbons and Strategies for Remediation and Efficiency Enhancement[J].Environmental Science & Technology,2023,46(2):202-214.
[60] ZHAO H,GU Y J,LIU X Y,et al.Reducing Phenanthrene Contamination in Trifolium Repens L.with Root-associated Phenanthrene-degrading Bacterium Diaphorobacter sp.Phe15[J].Frontiers in Microbio-logy,2021,12:792698.
[61] WU T,XU J,XIE W J,et al.Pseudomonas Aeruginosa L10:A Hydrocarbon-degrading,Biosurfactant-pro-ducing,and Plant-growth-promoting Endophytic Bacterium Isolated from a Reed(Phragmites Australis)[J].Frontiers in Microbiology,2018,9:1087.
[62] YI S W,LI F,WU C,et al.Synergistic Leaching of Heavy Metal-polycyclic Aromatic Hydrocarbon in Co-contaminated Soil by Hydroxamate Siderophore:Role of Cation-π and Chelation[J].Journal of Hazardous Materials,2022,424:127514.
[63] NING X,LIANG J S,MEN Y J,et al.Siderophores Provoke Extracellular Superoxide Production by Arthrobacter Strains During Carbon Sources-level Fluctuation[J].Environmental Microbiology,2022,24(2):894-904.
[64] GU C,WANG J,GUO M F,et al.Extracellular Degradation of Tetrabromobisphenol A via Biogenic Reactive Oxygen Species by a Marine Pseudoalteromonas sp[J].Water Research,2018,142:354-362.
[65] FERNANDEZ M,CALLEGARI E A,PAEZ M D,et al.Proteomic Analysis to Unravel the Biochemical Mechanisms Triggered by Bacillus Toyonensis SFC 500-1E Under Chromium(Ⅵ)and Phenol Stress[J].BioMe-tals,2023,36(5):1081-1108.
[66] HICKFORD S J H,KÜPPER F C,ZHANG G P,et al.Petrobactin Sulfonate,a New Siderophore Produced by the Marine Bacterium Marinobacter Hydrocarbonoclasticus[J].Journal of Natural Products,2004,67(11):1897-1899.
[67] KUNDU D,HAZRA C,CHAUDHARI A.Biodegradation of 2,6-dinitrotoluene and Plant Growth Promoting Traits by Rhodococcus Pyridinivorans NT2:Identification and Toxicological Analysis of Metabolites and Proteomic Insights[J].Biocatalysis and Agricultural Biotechnology,2016,8:55-65.
[68] SINGHA L P,SINHA N,PANDEY P.Rhizoremedia-tion Prospects of Polyaromatic Hydrocarbon Degrading Rhizobacteria,That Facilitate Glutathione and Glutathione-S-transferase Mediated Stress Response,and Enhance Growth of Rice Plants in Pyrene Contaminated Soil[J].Ecotoxicology and Environmental Safety,2018,164:579-588.
[69] ARANTES V,MILAGRES A M F.The Effect of a Catecholate Chelator as a Redox Agent in Fenton-based Reactions on Degradation of Lignin-model Substrates and on COD Removal from Effluent of an ECF Kraft Pulp Mill[J].Journal of Hazardous Materials,2007,141(1):273-279.
[70] KUNZ P M,MÖRTTER K,MÜLLER R,et al.Improving Manganese Circular Economy from Cellulose by Chelation with Siderophores Immobilized to Magnetic Microbeads[J].Environment,Development and Sustainability,2021,23(6):8252-8271.
[71] KUMAR P,THAKUR S,DHINGRA G K,et al.Inoculation of Siderophore Producing Rhizobacteria and Their Consortium for Growth Enhancement of Wheat Plant[J].Biocatalysis and Agricultural Biotechnology,2018,15(2):264-269.
[72] 李韵雅.高产铁载体根际促生菌的筛选及其在土壤修复方面的潜在应用[D].无锡:江南大学,2018.
LI Yun-ya.Screening of Siderophore-high-yield Plant Growth Promoting Rhizobacteria and Its Potential Application in Soil Remediation[D].Wuxi:Jiangnan University,2018.
[73] 邓声坤,雷锋杰,龙漪萍,等.细菌铁载体拮抗植物病原真菌及促生作用研究进展[J].微生物学通报,2023,50(7):3198-3210.
DENG Sheng-kun,LEI Feng-jie,LONG Yi-ping,et al.Bacterial Siderophores Antagonize Phytopathogenic Fungi and Promote Plant Growth:A Review[J].Microbiology China,2023,50(7):3198-3210.
[74] GAO B B,CHAI X F,HUANG Y M,et al.Sidero-phore Production in Pseudomonas sp.Strain SP3 Enhances Iron Acquisition in Apple Rootstock[J].Journal of Applied Microbiology,2022,133(2):720-732.
[75] VERMA S,KUMAR M,KUMAR A,et al.Diversity of Bacterial Endophytes of Maize(Zea Mays) and Their Functional Potential for Micronutrient Biofortification[J].Current Microbiology,2022,79:6.
[76] SCHENK P M,CARVALHAIS L C,KAZAN K.Unraveling Plant-microbe Interactions:Can Multi-species Transcriptomics Help?[J].Trends in Biotechnology,2012,30(3):177-184.
[77] SILAMBARASAN S,LOGESWARI P,VANGNAI A S,et al.Co-application of Citric Acid and Nocardiopsis sp.Strain RA07 Enhances Phytoremediation Potentiality of Sorghum Bicolor L[J].Environmental Science and Pollution Research,2023,30:86244-86254.
[78] JIN C W,LI G X,YU X H,et al.Plant Fe Status Affects the Composition of Siderophore-secreting Microbes in the Rhizosphere[J].Annals of Botany,2010,105(5):835-841.
[79] AHMADZADEH F,KHOSHGOFTARMANESH A H.Release of Phytosiderophores from Roots of Wheat and Triticale Under Nickel-deficient Conditions[J].Journal of Plant Nutrition and Soil Science,2019,182(5):708-714.
[80] LIU Y,KONG D Y,WU H L,et al.Iron in Plant-pathogen Interactions[J].Journal of Experimental Botany,2021,72(6):2114-2124.
[81] BENEDUZI A,AMBROSINI A,PASSAGLIA L M P.Plant Growth-promoting Rhizobacteria(PGPR):Their Potential as Antagonists and Biocontrol Agents[J].Genetics and Molecular Biology,2012,35(4):1044-1051.
[82] KLOEPPER J W,LEONG J,TEINTZE M,et al.Enhanced Plant Growth by Siderophores Produced by Plant Growth-promoting Rhizobacteria[J].Nature,1980,286:885-886.
[83] 王智荣,梅小飞,杜木英,等.荧光假单胞菌ZX对采后锦橙绿霉病的防治及其抑菌机制[J].微生物学报,2019,59(5):950-964.
WANG Zhi-rong,MEI Xiao-fei,DU Mu-ying,et al.Biocontrol of Green Mold Decay in Jincheng Citrus Fruits by Pseudomonas Fluorescens ZX[J].Acta Microbiologica Sinica,2019,59(5):950-964.
[84] VALLABHANENI S D.Biocontrol of Rhizoctonia Solani in Tobacco(Nicotiana Tabacum)Seed Beds Us-ing Pseudomonas Fluorescens[J].Agricultural Research,2016,5(2):137-144.
[85] 张 亮,盛 浩,袁 红,等.荧光假单胞菌PEF-5#18防控番茄枯萎病的定殖机理[J].中国生物防治学报,2017,33(5):658-666.
ZHANG Liang,SHENG Hao,YUAN Hong,et al.Colonization of Pseudomonas Fluorescens PEF-5#18 to Control Fusarium Wilt Disease on Tomato[J].Chinese Journal of Biological Control,2017,33(5):658-666.
[86] 李潇潇,师桂英,张立彭,等.荧光假单胞菌(Pseudomonas Fluorescens)在植物病害生物防治中的研究及展望[J].草原与草坪,2021,41(5):148-156.
LI Xiao-xiao,SHI Gui-ying,ZHANG Li-peng,et al.Application of Pseudomonas Fluorescens in Biological Control of Plant Disease and Its Prospects[J].Grassland and Turf,2021,41(5):148-156.

Memo

Memo:
-
Last Update: 2023-12-01