|Table of Contents|

Time Series InSAR Monitoring and Influencing Factors of Land Subsidence Along the Beijing-Tianjin Section of Beijing-Shanghai Expressway, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2024年第02期
Page:
269-284
Research Field:
大地测量、遥感与地学大数据
Publishing date:

Info

Title:
Time Series InSAR Monitoring and Influencing Factors of Land Subsidence Along the Beijing-Tianjin Section of Beijing-Shanghai Expressway, China
Author(s):
WANG Chu123 DING Rui-li12345* CHEN Mi123 ZHANG Dan-dan6 GE Peng-fei123 CHENG Xi123 FAN Kai-lun123
(1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China; 2.Base of the State Key Laboratory of Urban Environmental Process and Digital Modelling, Capital Normal University, Beijing 100048, China; 3. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; 4. Key Laboratory of Monitoring and Protection of Natural Resources in Mining Cities, Ministry of Natural Resources, Jinzhong 030600, Shanxi, China; 5. Shanxi Provincial Key Lab of Resources, Environment and Disaster Monitoring, Coal Geological Geophysical Exploration Surveying & Mapping Institute of Shanxi Province, Jinzhong 030600, Shanxi, China; 6. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China)
Keywords:
land subsidence SBAS-InSAR technology time series analysis GWR model impact factor Beijing-Shanghai expressway
PACS:
P237; P642.26
DOI:
10.19814/j.jese.2023.08007
Abstract:
Land subsidence, as one of the main geological hazards in the plain area, has a potential impact on the safe operation of the expressway. In order to explore the land subsidence of the Beijing-Tianjin section of Beijing-Shanghai expressway, 70 Sentinel-1B satellite images from January 2017 to March 2020 were selected, and SBAS-InSAR technology was used to monitor the land subsidence along the section. The accuracy of InSAR monitoring result was evaluated by external level observation. On this basis, nine factors were divided into three categories to conduct spatial simulation of the settlement amount. By comparing the simulation effects of OLS, GWR and MGWR models, the relative optimal model was selected to conduct quantitative research on various influencing factors. The results show that the Beijing-Tianjin section of Beijing-Shanghai expressway exhibits uneven settlement characteristics, with a maximum annual sedimentation rate exceeding -90 mm?a-1. There are mainly six obvious severe settlement centers distributed in the study area, with three of them passing through by Beijing-Shanghai expressway. The quantitative analysis of MGWR model, which has the best simulation effect, shows that the deposition thickness of Quaternary system and groundwater level changes have greater influence on the settlement, while the topographical environmental factors have less influence.

References:

[1] 崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报,2007,29(3):275-278.
CUI Zhen-dong,TANG Yi-qun.Domestic and International Recent Situation and Research of Land Subsidence Disasters[J].Northwestern Seismological Journal,2007,29(3):275-278.
[2] 张莉萍,曹建军,冯寿兆,等.城市地面沉降及其防治措施综述[J].广东科技,2009(12):296-297.
ZHANG Li-ping,CAO Jian-jun,FENG Shou-zhao,et al.Summary of Urban Land Subsidence and Its Prevention and Control Measures[J].Guangdong Science & Technology,2009(12):296-297.
[3] 贾三满,田 芳,齐 干.城市“慢性病”:地面沉降成因及综合防控对策[J].城市与减灾,2019(3):22-27.
JIA San-man,TIAN Fang,QI Gan.Urban “Chronic Disease”:The Origin and Comprehensive Control Countermeasures of Land Subsidence[J].City and Disaster Reduction,2019(3):22-27.
[4] 洪志涛.嘉定新城主城区地面沉降影响因素及其调控措施综合分析[D].大连:辽宁师范大学,2023.
HONG Zhi-tao.Comprehensive Analysis of Influenc-ing Factors and Control Measures of Land Subsi-dence in the Main Urban Areas of Jiading New City[D].Dalian:Liaoning Normal University,2023.
[5] 武 燕.基于DS-InSAR方法的黄土区域高速铁路沿线沉降监测[D].成都:西南交通大学,2019.
WU Yan.Subsidence Monitoring Along High Speed Railway in Loess Area Based on DS-InSAR Method[D].Chengdu:Southwest Jiaotong University,2019.
[6] 贾洪果.高分辨率永久散射体雷达干涉及其应用于高速铁路沉降监测[D].成都:西南交通大学,2012.
JIA Hong-guo.High-resolution Persistent Scatterer Radar Interferometry and Its Application to Monitoring Subsidence of High Speed Railway[D].Chengdu:Southwest Jiaotong University,2012.
[7] 于海若,宫辉力,陈蓓蓓,等.京津冀地区地面沉降研究进展与思考[J].测绘科学,2020,45(4):125-133.
YU Hai-ruo,GONG Hui-li,CHEN Bei-bei,et al.The Advance and Consideration of Land Subsidence in Bei-jing-Tianjin-Hebei Region[J].Science of Surveying and Mapping,2020,45(4):125-133.
[8] 姜乃齐.基于InSAR技术的高速公路沿线沉降监测研究[D].昆明:昆明理工大学,2021.
JIANG Nai-qi.Research on Settlement Monitoring Along Freeways Based on InSAR Technology[D].Kunming:Kunming University of Science and Technology,2021.
[9] 朱 宝.基于时序InSAR技术的成都道路形变监测分析与应用[D].成都:电子科技大学,2020.
ZHU Bao.Analysis and Application of Road Surface Deformation Monitoring in Chengdu Using Time-series InSAR Technique[D].Chengdu:University of Electronic Science and Technology of China,2020.
[10] 陈玉倩,伍吉仓,宋瑞庆,等.利用哨兵卫星SAR影像数据监测西安地铁沿线地面沉降[J].工程勘察,2023,51(4):48-51,78.
CHEN Yu-qian,WU Ji-cang,SONG Rui-qing,et al.Monitoring Ground Subsidence Along Xi'an Metro Li-ne Using Sentinel Satellite SAR Images[J].Geotechnical Investigation & Surveying,2023,51(4):48-51,78.
[11] 李洋洋,左小清,肖 波,等.利用InSAR和网络模型的昆明地铁沿线形变预测[J].测绘科学,2023,48(1):100-109,126.
LI Yang-yang,ZUO Xiao-qing,XIAO Bo,et al.Using InSAR and Network Models to Predict the Deformation of Kunming Metro Line[J].Science of Surveying and Mapping,2023,48(1):100-109,126.
[12] 张新伟,马 静,侯祖行,等.北京大兴国际机场及周边交通干道形变时序InSAR监测[J].地球科学与环境学报,2023,45(1):131-142.
ZHANG Xin-wei,MA Jing,HOU Zu-hang,et al.InSAR Monitoring on Deformation Time Series of Beijing Daxing International Airport and Its Surrounding Traffic Arteries,China[J].Journal of Earth Sciences and Environment,2023,45(1):131-142.
[13] 张永红,刘 冰,吴宏安,等.雄安新区2012~2016年地面沉降InSAR监测[J].地球科学与环境学报,2018,40(5):652-662.
ZHANG Yong-hong,LIU Bing,WU Hong-an,et al.Ground Subsidence in Xiong'an New Area from 2012 to 2016 Monitored by InSAR Technique[J].Journal of Earth Sciences and Environment,2018,40(5):652-662.
[14] 刘 冰,张永红,吴宏安,等.时间序列InSAR技术辅助下的北京市高速公路网沉降监测应用[J].测绘通报,2018(2):120-125.
LIU Bing,ZHANG Yong-hong,WU Hong-an,et al.Subsidence Monitoring for Expressway Network in Beijing Based on Time-series InSAR Technique[J].Bulletin of Surveying and Mapping,2018(2):120-125.
[15] 张学东,葛大庆,肖 斌,等.多轨道集成PS-InSAR监测高速公路沿线地面沉降研究:以京沪高速公路(北京—河北)为例[J].测绘通报,2014(10):67-69.
ZHANG Xue-dong,GE Da-qing,XIAO Bin,et al.Study on Multi-track Integration PS-InSAR Monitor-ing the Land Subsidence Along the Highway:Taking Jinghu Highway(Beijing-Hebei)as an Example[J].Bulletin of Surveying and Mapping,2014(10):67-69.
[16] LAZECKY M,RAPANT P,PERISSIN D,et al.Deformations of Highway over Undermined Ostrava-Svinov Area Monitored by InSAR Using Limited Set of SAR Images[J].Procedia Technology,2014,16:414-421.
[17] DAI K R,LIU G X,LI Z H,et al.Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR[J].Sensors,2018,18(6):1876.
[18] DOBSON A J.An Introduction to Generalized Linear Models[M].London:Chapman & Hall,2001.
[19] 孙才志,马奇飞,赵良仕.基于GWR模型的中国水资源绿色效率驱动机理[J].地理学报,2020,75(5):1022-1035.
SUN Cai-zhi,MA Qi-fei,ZHAO Liang-shi.Analysis of Driving Mechanism Based on a GWR Model of Green Efficiency of Water Resources in China[J].Acta Geographica Sinica,2020,75(5):1022-1035.
[20] 田秀秀,王彦兵,杨翠玉,等.基于GWR模型的地下水超采对地面沉降影响分析[J].地理与地理信息科学,2021,37(3):97-102.
TIAN Xiu-xiu,WANG Yan-bing,YANG Cui-yu,et al.Influence Analysis of Groundwater Withdrawal on Land Subsidence Based on Geographical Weighted Re-gression Model[J].Geography and Geo-information Science,2021,37(3):97-102.
[21] BRUNSDON C,FOTHERINGHAM A S,CHARLTON M E.Geographically Weighted Regression:A Method for Exploring Spatial Nonstationarity[J].Geographi-cal Analysis,1996,28(4):281-298.
[22] 卢宾宾,葛 咏,秦 昆,等.地理加权回归分析技术综述[J].武汉大学学报(信息科学版),2020,45(9):1356-1366.
LU Bin-bin,GE Yong,QIN Kun,et al.A Review on Geographically Weighted Regression[J].Geomatics and Information Science of Wuhan University,2020,45(9):1356-1366.
[23] 王 莉,王志明,杨 莹.基于PS-InSAR技术的哈大高铁扶余至德惠段地表形变监测[J].世界地质,2020,39(4):921-928.
WANG Li,WANG Zhi-ming,YANG Ying.Monitoring on Surface Deformation from Fuyu to Dehui Section of Harbin-Dalian High-speed Railway Using PS-InSAR Method[J].World Geology,2020,39(4):921-928.
[24] 张 天.基于SBAS-InSAR城市地表沉降的预测建模及原因分析[D].北京:北京建筑大学,2020.
ZHANG Tian.Prediction Modeling and Analysis of Urban Land Subsidence Based on SBAS-InSAR[D].Beijing:Beijing University of Civil Engineering and Architecture,2020.
[25] BERARDINO P,FORNARO G,LANARI R,et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[26] FOTHERINGHAM A S,YANG W B,KANG W.Multiscale Geographically Weighted Regression(MGWR)[J].Annals of the American Association of Geographers,2017,107(6):1247-1265.
[27] 祝新明,宋小宁,冷 佩,等.多尺度地理加权回归的地表温度降尺度研究[J].遥感学报,2021,25(8):1749-1766.
ZHU Xin-ming,SONG Xiao-ning,LENG Pei,et al.Spatial Downscaling of Land Surface Temperature with the Multi-scale Geographically Weighted Regression[J].National Remote Sensing Bulletin,2021,25(8):1749-1766.
[28] 廖明杰.北京近30年InSAR地表沉降观测与演化态势分析[D].成都:西南交通大学,2022.
LIAO Ming-jie.InSAR Surface Subsidence Observation in Beijing for the Past 30 Years and Evolutionary Trend Analysis[D].Chengdu:Southwest Jiaotong University,2022.
[29] 张永红,吴宏安,康永辉.京津冀地区1992~2014年三阶段地面沉降InSAR监测[J].测绘学报,2016,45(9):1050-1058.
ZHANG Yong-hong,WU Hong-an,KANG Yong-hui.Ground Subsidence over Beijing-Tianjin-Hebei Region During Three Periods of 1992 to 2014 Monitored by Interferometric SAR[J].Acta Geodaetica et Cartogra-phica Sinica,2016,45(9):1050-1058.
[30] 李广宇,张 瑞,刘国祥,等.Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析[J].遥感学报,2018,22(4):633-646.
LI Guang-yu,ZHANG Rui,LIU Guo-xiang,et al.Land Subsidence Detection and Analysis over Beijing-Tianjin-Hebei Area Based on Sentinel-1A TS-DInSAR[J].National Remote Sensing Bulletin,2018,22(4):633-646.
[31] 刘科伟,李 俊,郑光明.区域地面沉降场InSAR精度验证[J].中国水运,2021,21(9):142-144.
LIU Ke-wei,LI Jun,ZHENG Gang-ming.Verification of InSAR Accuracy for Regional Ground Subsidence Field[J].China Water Transport,2021,21(9):142-144.
[32] 杨 霄.菏泽市地面沉降因子识别体系与预测评估模型研究[D].济南:山东大学,2021.
YANG Xiao.Research on the Identification System and Prediction Evaluation Model of Land Subsidence Factors in Heze City[D].Jinan:Shandong University,2021.
[33] 王海刚.天津市地面沉降现状及预测[D].北京:中国地质大学,2006.
WANG Hai-gang.Current Situation and Tendency of Land Subsidence in Tianjin[D].Beijing:China University of Geosciences,2006.
[34] 李海君.华北平原地表形变演化特征与影响因素分析研究[D].哈尔滨:中国地震局工程力学研究所,2021.
LI Hai-jun.Analysis and Research on Evolution Cha-racteristics and Influencing Factors of Ground Deformation in North China Plain[D].Harbin:Institute of Engineering Mechanics,China Earthquake Admi-nistration,2021.
[35] 张 扬.武汉市地面沉降时空格局、驱动因子及水文效应研究[D].武汉:武汉大学,2021.
ZHANG Yang.Spatial-temporal Patterns,Driving Forces and Hydrological Effects of Land Subsidence:A Case Study of Wuhan City,China[D].Wuhan:Wuhan University,2021.
[36] POURGHASEMI H R,BEHESHTIRAD M.Assessment of a Data-driven Evidential Belief Function Mo-del and GIS for Groundwater Potential Mapping in the Koohrang Watershed,Iran[J].Geocarto International,2015,30(6):662-685.
[37] ARABAMERI A,SAHA S,ROY J,et al.A Novel Ensemble Computational Intelligence Approach for the Spatial Prediction of Land Subsidence Susceptibility[J].Science of the Total Environment,2020,726:138595.
[38] 张 勤,赵超英,陈雪蓉.多源遥感地质灾害早期识别技术进展与发展趋势[J].测绘学报,2022,51(6):885-896.
ZHANG Qin,ZHAO Chao-ying,CHEN Xue-rong.Technical Progress and Development Trend of Geological Hazard Identification with Multi-source Remote Sensing[J].Acta Geodaetica et Cartographica Sinica,2022,51(6):885-896.
[39] 蒋万钰,陈 冠,孟兴民,等.基于卷积神经网络模型的区域滑坡敏感性评价:以川藏铁路沿线为例[J].兰州大学学报(自然科学版),2022,58(2):203-211.
JIANG Wan-yu,CHEN Guan,MENG Xing-min,et al.Evaluation of Regional Landslide Susceptibility Based on the Convolution Neural Network Model:A Case Study Along the Sichuan Tibet Railway[J].Journal of Lanzhou University(Natural Sciences),2022,58(2):203-211.
[40] 杨 梅,肖 静,蔡 辉.多元分析中的多重共线性及其处理方法[J].中国卫生统计,2012,29(4):620-624.
YANG Mei,XIAO Jing,CAI Hui.Multicollinearity in Multivariate Analysis and Its Processing Methods[J].Chinese Journal of Health Statistics,2012,29(4):620-624.
[41] 林石莲.多重共线性修正方法的比较与应用研究[D].广州:广东财经大学,2017.
LIN Shi-lian.Comparison and Application of the Correction Method of Multi-collinearity[D].Guangzhou:Guangdong University of Finance & Economics,2017.
[42] 马雄威.线性回归方程中多重共线性诊断方法及其实证分析[J].华中农业大学学报(社会科学版),2008(2):78-81,85.
MA Xiong-wei.Diagnosis and Empirical Analysis on Multicollinearity in Linear Regression Model[J].Journal of Huazhong Agricultural University(Social Sciences Edition),2008(2):78-81,85.
[43] SHI L Y,GONG H L,CHEN B B,et al.Land Subsi-dence Prediction Induced by Multiple Factors Using Machine Learning Method[J].Remote Sensing,2020,12(24):4044.

Memo

Memo:
-
Last Update: 2024-04-10