|Table of Contents|

Spatiotemporal Evolution Characteristics of Water-energy-carbon System Coupling Coordination in Nine Provinces Along Yellow River, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2025年第03期
Page:
414-426
Research Field:
黄河流域生态保护和高质量发展专刊(上)
Publishing date:

Info

Title:
Spatiotemporal Evolution Characteristics of Water-energy-carbon System Coupling Coordination in Nine Provinces Along Yellow River, China
Author(s):
CHEN Jie123* ZHANG Yun123 QIAN Hui123 LIU Yue-tong123 YANG Yu-chen123 ZHAO Bin123
(1.School of Water and Environment,Chang'an University,Xi'an 710054,Shaanxi,China; 2.Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education,Chang'an University,Xi'an 710054,Shaanxi,China; 3.Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources,Chang'an University,Xi'an 710054,Shaanxi,China)
Keywords:
water-energy-carbon system coupling coordination equilibrium entropy development potential Mantel test ecological security Yellow River
PACS:
X24
DOI:
10.19814/j.jese.2025.02023
Abstract:
The coordinated and sustainable development of water-energy-carbon system is crucial for advancing ecological conservation and high-quality development in Yellow River Basin. A coupling coordination degree evaluation index system was established to systematically analyze the spatiotemporal evolution and influencing factors of water-energy-carbon system's coupling coordination degree in nine provinces along Yellow River from 2006 to 2021 based on coupled coordination degree model, equilibrium entropy model, and Mantel test. The results show that the comprehensive evaluation index of water-energy-carbon system in the nine provinces along Yellow River ranges from 0.29 to 0.48, and exhibits a generally increasing tendency from 2006 to 2021; the spatiotemporal differentiation characteristics of coupling coordination degree are significant; temporally, it progresses toward higher coordination levels; spatially, there is a pattern of high value in the northwest, followed by the northeast, and lower in the middle; key influencing factors include the proportion of ecological water use, daily wastewater treatment capacity, total power generation, energy consumption per unit of GDP, carbon emissions per unit of GDP, and the share of secondary industries. Based on these findings, differentiated optimization pathways are proposed, including that upstream provinces and autonomous regions should strengthen water-carbon collaborative compensation mechanism, midstream provinces and autonomous regions should promote coal-based energy efficiency with water-saving technologies, and downstream provinces should adopt low-carbon industrial restructuring with cross-regional ecological compensation schemes, to enhance coupling coordination level of regional water-energy-carbon system.

References:

[1] 赵荣钦,李志萍,韩宇平,等.区域“水-土-能-碳”耦合作用机制分析[J].地理学报,2016,71(9):1613-1628.
ZHAO Rong-qin,LI Zhi-ping,HAN Yu-ping,et al.The Coupling Interaction Mechanism of Regional Water-land-energy-carbon System[J].Acta Geographica Sinica,2016,71(9):1613-1628.
[2] 赵荣钦,姬宇飞,冯 薇,等.基于土地利用的水-能-碳关联研究:理论框架与关键问题[J].中国土地科学,2024,38(8):97-108.
ZHAO Rong-qin,JI Yu-fei,FENG Wei,et al.Resear-ch on Water-energy-carbon Nexus of Land Use:Theo-retical Framework and Key Issues[J].China Land Science,2024,38(8):97-108.
[3] International Energy Agency.World Energy Outlook 2021[R].Paris:International Energy Agency,2021.
[4] HAMICHE A M,STAMBOULI A B,FLAZI S.A Review of the Water-energy Nexus[J].Renewable and Sustainable Energy Reviews,2016,65:319-331.
[5] CHHIPI-SHRESTHA G,HEWAGE K,SADIQ R.Water-energy-carbon Nexus Modeling for Urban Water Systems:System Dynamics Approach[J].Journal of Water Resources Planning and Management,2017,143(6):04017016.
[6] TAN Q L,LIU Y,YE Q.The Impact of Clean Deve-lopment Mechanism on Energy-water-carbon Nexus Optimization in Hebei,China:A Hierarchical Model Based Discussion[J].Journal of Environmental Mana-gement,2020,264:110441.
[7] LIU J G,HULL V,GODFRAY H C J,et al.Nexus Approaches to Global Sustainable Development[J].Nature Sustainability,2018,1:466-476.
[8] 尚 梅,申鑫新,郭道燕.“双碳”目标下中国省域“能-水-碳”耦合协调的时空演化和驱动因素探析[J].环境科学学报,2025,45(2):533-546.
SHANG Mei,SHEN Xin-xin,GUO Dao-yan.Spatiotemporal Evolution and Driving Factors of “Energy-water-carbon” Coupling Coordination of Provinces in China Under the “Double-carbon” Target[J].Acta Scientiae Circumstantiae,2025,45(2):533-546.
[9] 于法稳,方 兰.黄河流域生态保护和高质量发展的若干问题[J].中国软科学,2020(6):85-95.
YU Fa-wen,FANG Lan.Issues Regarding the Ecological Protection and High-quality Development of Yellow River Basin[J].China Soft Science,2020(6):85-95.
[10] 陈艳萍,蒋倩倩,刘晶婕.黄河流域“水资源-生态保护-高质量发展”空间均衡性诊断[J].水利经济,2024,42(1):14-20.
CHEN Yan-ping,JIANG Qian-qian,LIU Jing-jie.Spa-tial Equilibrium Diagnosis of “Water Resources-ecological Protection-high-quality Development” in the Yellow River Basin[J].Journal of Economics of Water Resources,2024,42(1):14-20.
[11] 国务院.黄河流域生态保护和高质量发展规划纲要[R].北京:国务院,2021.
The State Council.Outline of the Ecological Protection and High-quality Development Plan for the Ye-llow River Basin[R].Beijing:The State Council,2021.
[12] 苏永伟,刘泽鑫.资源-环境约束下黄河流域产业结构优化影响因素研究:基于2008~2018年的数据分析[J].西北大学学报(自然科学版),2021,51(3):425-437.
SU Yong-wei,LIU Ze-xin.Research on the Factors Influencing the Optimization of Industrial Structure in the Yellow River Basin Under Resource-environment Constraints:Analysis Based on the Data from 2008 to 2018[J].Journal of Northwest University(Natural Science Edition),2021,51(3):425-437.
[13] 程 坤.我国煤炭资源勘查开发主要问题及对策措施[J].中国煤炭,2024,50(7):1-7.
CHENG Kun.Research on the Main Problems and Countermeasures of Coal Resources Exploration and Development in China[J].China Coal,2024,50(7):1-7.
[14] 高 赢.黄河流域碳压力的时空分异及驱动因素研究[J].生态经济,2024,https:∥link.cnki.net/urlid/53.1193.F.20240906.1636.002.
GAO Ying.Spatio-temporal Differentiation and Driving Factors of Carbon Pressure in the Yellow River Basin[J].Ecological Economy,2024,https:∥link.cnki.net/urlid/53.1193.F.20240906.1636.002.
[15] ZHANG Y Y,YANG Y.Can the Resource and Environmental Dilemma Due to Water-energy-carbon Constraints Be Solved in the Process of New Urbanization?[J].Sustainable Cities and Society,2024,114:105748.
[16] FENG M Q,CHEN Y N,DUAN W L,et al.Water-energy-carbon Emissions Nexus Analysis of Crop Production in the Tarim River Basin,Northwest China[J].Journal of Cleaner Production,2023,396:136566.
[17] LIU S F,CUI S M,ADAMOWSKI J F,et al.Assessing the Impact of Various Irrigation Technologies on Agricultural Production:A Water-energy-carbon Ne-xus Perspective[J].Science of the Total Environment,2024,954:176809.
[18] ZHU H,ZHANG Q,YOU H L.A Water-energy-carbon-economy Framework to Assess Resources and Environment Sustainability:A Case Study of the Yangtze River Economic Belt,China[J].Energies,2024,17(13):3143.
[19] 杨 屹,张园园.呼包鄂榆资源型城市群“水-能-碳”耦合变化及影响因素[J].中国环境科学,2023,43(11):6212-6224.
YANG Yi,ZHANG Yuan-yuan.Analysis of the Coupling Process and the Influencing Factors of the “Water-energy-carbon” Relationship in the Hohhot-Baotou-Ordos-Yulin Resource-based Urban Agglomeration[J].China Environmental Science,2023,43(11):6212-6224.
[20] VENKATESH G,BRATTEBØ H.Energy Consumption,Costs and Environmental Impacts for Urban Water Cycle Services:Case Study of Oslo(Norway)[J].Energy,2011,36(2):792-800.
[21] YU L,LIU S L,WANG F F,et al.Effects of Agricultural Activities on Energy-carbon-water Nexus of the Qinghai-Tibet Plateau[J].Journal of Cleaner Production,2022,331:129995.
[22] XIE Z X,FENG M Y,ZHAO R Q,et al.Impact of Urbanization on Water-energy-carbon Nexus System:The Case of Zhengzhou,China[J].Cities,2024,155:105466.
[23] SUN K,HAN J M,WU Q R,et al.The Coupling Coordination and Spatiotemporal Evolution of Industrial Water-energy-CO2 in the Yellow River Basin[J].Science of the Total Environment,2024,912:169012.
[24] LIU X L,VU D,PERERA S C,et al.Nexus Between Water-energy-carbon Footprint Network:Multiregional Input-output and Coupling Coordination Degree Analysis[J].Journal of Cleaner Production,2023,430:139639.
[25] 熊 睿.“双碳”目标下黄河流域“能-水-碳”耦合关系和协同利用研究[D].太原:山西财经大学,2023.
XIONG Rui.“Energy-water-carbon” Nexus and Collaborative Utilization in the Yellow River Basin Under the “Dual Carbon” Goals[D].Taiyuan:Shanxi University of Finance & Economics,2023.
[26] 左其亭,张志卓,吴滨滨.基于组合权重TOPSIS模型的黄河流域九省区水资源承载力评价[J].水资源保护,2020,36(2):1-7.
ZUO Qi-ting,ZHANG Zhi-zhuo,WU Bin-bin.Evaluation of Water Resources Carrying Capacity of Nine Provinces in Yellow River Basin Based on Combined Weight TOPSIS Model[J].Water Resources Protection,2020,36(2):1-7.
[27] CHEN J,QIAN H,GAO Y Y,et al.Insights into Hy-drological and Hydrochemical Processes in Response to Water Replenishment for Lakes in Arid Regions[J].Journal of Hydrology,2020,581:124386.
[28] 赵 含,李占玲,王红瑞,等.黄河中游地区水-能-粮-碳纽带关系模拟与韧性调控[J].华北水利水电大学学报(自然科学版),2024,45(6):9-19.
ZHAO Han,LI Zhan-ling,WANG Hong-rui,et al.Simulation and Resilience Regulation of Water-energy-food-carbon Nexus in the Middle Reaches of the Yellow River[J].Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2024,45(6):9-19.
[29] YANG J T,YANG K,ZHANG F M,et al.Contributions of Natural and Anthropogenic Factors to Historical Changes in Vegetation Cover and Its Future Projections in the Yellow River Basin,China[J].International Journal of Climatology,2023,43(14):6434-6449.
[30] 李情情,曹永强,王 菲,等.海河流域水-能-碳系统耦合协调发展及驱动因素研究[J].华北水利水电大学学报(自然科学版),2024,45(6):20-31,40.
LI Qing-qing,CAO Yong-qiang,WANG Fei,et al.Study on the Coupling Coordination Development Characteristics and Driving Factors of Water-energy-carbon System in the Haihe River Basin[J].Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2024,45(6):20-31,40.
[31] 冯梅青,陈亚宁,焦 黎,等.2000~2019年新疆水-能源-粮食系统耦合协调发展研究[J].水资源与水工程学报,2022,33(2):77-84.
FENG Mei-qing,CHEN Ya-ning,JIAO Li,et al.Research on the Coupling and Coordinated Development of Water-energy-food System in Xinjiang During 2000-2019[J].Journal of Water Resources and Water Engineering,2022,33(2):77-84.
[32] 田 培,樊婧琨,金 贵,等.湖北省“水-能源-粮食”系统耦合协调度评价研究[J].长江流域资源与环境,2025,34(1):100-110.
TIAN Pei,FAN Jing-kun,JIN Gui,et al.Evaluation on Coupling and Coordination Degree of “Water-energy-food” System in Hubei Province[J].Resources and Environment in the Yangtze Basin,2025,34(1):100-110.
[33] 张芷若,肖喜萌.长江经济带水资源-经济社会-生态环境耦合协调研究[J].中国农村水利水电,2024(11):30-36.
ZHANG Zhi-ruo,XIAO Xi-meng.Coupling Coordination of Water Resources-economic Society-ecological Environment in the Yangtze River Economic Belt[J].China Rural Water and Hydropower,2024(11):30-36.
[34] 董 格,张中华,王 帅,等.黄河流域资源-人口-产业高质量发展的耦合协调及影响因素分析[J].西北大学学报(自然科学版),2024,54(3):434-449.
DONG Ge,ZHANG Zhong-hua,WANG Shuai,et al.Coupling Coordination and Influencing Factors Analysis of High-quality Development of “Resources-population-industry” in the Yellow River Basin[J].Journal of Northwest University(Natural Science Edition),2024,54(3):434-449.
[35] 牛亚琳.近十年甘肃水-能-粮-环境系统耦合协调度的时空演变及提升对策[D].兰州:西北师范大学,2022.
NIU Ya-lin.Spatial and Temporal Evolution of Water-energy-food-environment System Coupling Coordination in Gansu in the Last Decade and Its Improvement Measures[D].Lanzhou:Northwest Normal University,2022.
[36] 朱永明,蒋威远.沿黄城市群水资源-经济-生态-社会耦合协调研究[J].人民黄河,2024,46(6):14-19,42.
ZHU Yong-ming,JIANG Wei-yuan.Study on the Coupling and Coordination of Water Resources,Economy,Ecology and Society in Urban Agglomerations Along the Yellow River[J].Yellow River,2024,46(6):14-19,42.
[37] 陈春华,王 玉,张 恒,等.黄河流域农业用水效率-经济发展-生态环境耦合协调发展评价[J].中国农村水利水电,2024(6):114-123.
CHEN Chun-hua,WANG Yu,ZHANG Heng,et al.Evaluation on Coupling Coordination Development of Agricultural Water Use Efficiency-economic Development-ecological Environment in the Yellow River Basin[J].China Rural Water and Hydropower,2024(6):114-123.
[38] 廖重斌.环境与经济协调发展的定量评判及其分类体系:以珠江三角洲城市群为例[J].热带地理,1999,19(2):171-177.
LIAO Chong-bin.Quantitative Judgement and Classification System for Coordinated Development of Quantitative Environment and Economy:A Case Stu-dy of the City Group in the Pearl River Delta[J].Tro-pical Geography,1999,19(2):171-177
[39] 王淑婧,李俊峰.长三角城市群高质量绿色发展的均衡性特征及障碍因素[J].自然资源学报,2022,37(6):1540-1554.
WANG Shu-jing,LI Jun-feng.Balanced Characteristics and Obstacle Factors of High-quality Green Development in Yangtze River Delta Urban Agglomeration[J].Journal of Natural Resources,2022,37(6):1540-1554.
[40] 刘庆芳,杨 定,杨振山,等.青藏高原国家公园群人文生态系统耦合协调评价及障碍因子识别[J].地理学报,2023,78(5):1119-1135.
LIU Qing-fang,YANG Ding,YANG Zhen-shan,et al.Evaluation of Coupling Coordination and Identification of Obstacle Factors of Human Ecosystem in Qinghai-Tibet Plateau National Park Cluster[J].Acta Geographica Sinica,2023,78(5):1119-1135.
[41] MANTEL N.The Detection of Disease Clustering and a Generalized Regression Approach[J].Cancer Research,1967,27(2):209-220.
[42] 邹宗华,赵 斌,陈 洁,等.黄河沿线九省区水资源承载力评价及时空变化特征[J].地球科学与环境学报,2024,46(3):351-363.
ZOU Zong-hua,ZHAO Bin,CHEN Jie,et al.Assessment of Water Resources Carrying Capacity and Temporal-spatial Variation Characteristics of Nine Pro-vinces Along the Yellow River,China[J].Journal of Earth Sciences and Environment,2024,46(3):351-363.
[43] 黄婕怡.中国省域水-能-碳-经济耦合协调度分析[D].北京:北方工业大学,2024.
HUANG Jie-yi.Analysis of Water-energy-carbon-eco-nomy Coupling Coordination Degree in China[D].Beijing:North China University of Technology,2024.
[44] 田贵良,孙泽辰,景晓栋,等.高质量发展背景下黄河流域“水-能-粮-碳”系统韧性提升策略研究[J].中国农村水利水电,2024(11):1-11,20.
TIAN Gui-liang,SUN Ze-chen,JING Xiao-dong,et al.Research on Strategies for Enhancing the Resilience of the “Water-energy-grain-carbon” System in the Ye-llow River Basin Under the Background of High Quality Development[J].China Rural Water and Hydropower,2024(11):1-11,20.
[45] 张文彬,闫艺丹.黄河流域高质量发展系统均衡性及影响因素多视角分析[J].人民黄河,2024,46(6):1-7,13.
ZHANG Wen-bin,YAN Yi-dan.Analysis of Equilibrium Characteristics and Influencing Factors of High-quality Development in the Yellow River Basin from a Multi-dimensional Perspective[J].Yellow River,2024,46(6):1-7,13.
[46] 张楚汉,王光谦.关于黄河流域生态保护和高质量发展的思考[J].人民黄河,2024,46(9):1-7.
ZHANG Chu-han,WANG Guang-qian.Thoughts on Ecological Protection and High-quality Development in the Yellow River Basin[J].Yellow River,2024,46(9):1-7.
[47] 张楚汉,王光谦.黄河九篇[M].北京:科学出版社,2023.
ZHANG Chu-han,WANG Guang-qian.The Yellow River:History·Present·Future[M].Beijing:Scien-ce Press,2023.
[48] 李前锦,张泽雅,白英臣,等.新质生产力视角下黄河中游地区生态效率时空演变及影响因素[J].环境工程技术学报,2025,https:∥link.cnki.net/urlid/11.5972.x.20250218.1349.002.
LI Qian-jin,ZHANG Ze-ya,BAI Ying-chen,et al.Analysis of the Spatio-temporal Evolution and Influencing Factors of Ecological Efficiency in the Middle Reaches of the Yellow River from the Perspective of New Quality Productivity Forces[J].Journal of Environmental Engineering Technology,2025,https:∥link.cnki.net/urlid/11.5972.x.20250218.1349.002.
[49] 苗长虹,夏 成,金凤君,等.黄河流域生态保护和高质量发展战略实施成效与推进策略[J].自然资源学报,2025,40(3):569-583.
MIAO Chang-hong,XIA Cheng,JIN Feng-jun,et al.Implementation Effectiveness and Promotion Strategies of Ecological Protection and High-quality Deve-lopment Strategy in the Yellow River Basin[J].Journal of Natural Resources,2025,40(3):569-583.
[50] 杨开忠,董亚宁.黄河流域生态保护和高质量发展制约因素与对策:基于“要素-空间-时间”三维分析框架[J].水利学报,2020,51(9):1038-1047.
YANG Kai-zhong,DONG Ya-ning.Research on Restricting Factors and Countermeasures of Ecological Protection and High-quality Development of Yellow River Basin:Analysis Based on the Multi-dimensional Framework of “Element-space-time”[J].Journal of Hydraulic Engineering,2020,51(9):1038-1047.
[51] 陈 语,姜大霖,刘 宇,等.煤电CCUS产业化发展路径与综合性政策支撑体系[J].中国人口·资源与环境,2024,34(1):59-70.
CHEN Yu,JIANG Da-lin,LIU Yu,et al.Development Path and Comprehensive Supporting Policy System of Coal Power's CCUS Industrialization[J].China Population,Resources and Environment,2024,34(1):59-70.
[52] 迟妍妍,王夏晖,刘斯洋,等.黄河流域水-能源-生态系统协同增效战略体系构建研究[J].环境科学研究,2024,37(1):11-23.
CHI Yan-yan,WANG Xia-hui,LIU Si-yang,et al.Research on the Construction Path of Coordinated Stra-tegy of Water-energy-ecosystem of the Yellow River Basin[J].Research of Environmental Sciences,2024,37(1):11-23.
[53] 赵政楠,茹少峰.黄河流域生态补偿的时空格局、区域差异及分布动态演进[J].环境科学,2024,45(10):5853-5867.
ZHAO Zheng-nan,RU Shao-feng.Spatio-temporal Si-tuation,Regional Differences,and Dynamic Evolution of the Distribution of Ecological Compensation in the Yellow River Basin[J].Environmental Science,2024,45(10):5853-5867.

Memo

Memo:
-
Last Update: 2025-06-20