|Table of Contents|

Analysis of Mapping Function and Atmospheric Precipitable Water Vapor Based on Ground GPS and MODIS Remote Sensing Image(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2010年第04期
Page:
436-440
Research Field:
地球信息科学
Publishing date:

Info

Title:
Analysis of Mapping Function and Atmospheric Precipitable Water Vapor Based on Ground GPS and MODIS Remote Sensing Image
Author(s):
JIANG Guang-wei1 WANG Li2 ZHANG Xiu-xia3
(1. Geodetic Data Processing Center, State Bureau of Surveying and Mapping, Xi'an 710054, Shaanxi, China; 2. School of Geology Engineering and Surveying, Chang'an University, Xi'an 710054, Shaanxi, China; 3. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)
Keywords:
zenith total delay mapping function ground GPS MODIS remote sensing image integrate water vapor precipitable water vapor
PACS:
P49;P228.4
DOI:
-
Abstract:
In order to improve the accuracy and real-timing for forecasting precipitable water vapor of disastrous weather in mesoscale and microscale, ground GPS data and MODIS remote sensing image in Xi'an were used to design four schemes for obtaining the original value of zenith dry delay with NMF, GMF and VMF1 mapping functions, and the effect of mapping function on calculating zenith total delay was discussed. The results showed that when the elevation of satellite was 10°, retrieval effect and precision of VMF1, GMF and NMF mapping functions were best, middle and weak, respectively; however, the three mapping functions were considerable when the elevation of satellite was 15°. Finally, integrate water vapors of ground GPS and MODIS remote sensing image were calculated, and then precipitable water vapors(PPWV-GPS, P<sub>PWV-MODIS)were calculated according to the relationship between integrate and precipitable water vapors; the relationship of precipitable water vapor between ground GPS and MODIS remote sensing image were fitted into linear function P<sub>PWV-MODIS=1.421 7P<sub>PWV-GPS-2.143, and the related coefficient was 0.952 1.

References:

[1] 李国平,黄丁发.GPS气象学研究及应用的进展与前景[J].气象科学,2005,25(6):651-661.
[2] 曲建光.GPS遥感气象要素的理论与应用研究[D].武汉:武汉大学,2005.
[3] 赵 峰.近实时GPS水汽自动处理系统的初步研究[D].南京:南京信息工程大学,2006.
[4] Bevis M,Businger S,Chiswell S,et al.GPS Meteorology:Mapping Zenith Wet Delays onto Precipitable Water[J].Journal of Applied Meteorology,1994,33(3):379-386.
[5] Boehm J,Schuh H.Vienna Mapping Functions in VLBI Analyses[J].Geophysical Research Letters,2004,31:277-281.
[6] Kouba J. Implementation and Testing of the Gridded Vienna Mapping Function 1(VMF1)[J]. Journal of Geodesy,2008,82(4/5):193-205.
[7] 张双成,叶世榕,刘经南,等.基于IGS超级跟踪站的近实时GPS气象研究及应用[J].测绘科学,2008,33(2):93-95.
[8] 曲伟菁,朱文耀,宋淑丽,等.三种对流层延迟改正模型精度评估[J].天文学报,2008,49(1):113-122.
[9] 曲建光,吴 壮.从GPS推算大气水汽的误差分析[J].测绘工程, 2001,10(4):24-26.
[10] 宋淑丽,朱文耀.区域GPS网实时计算可降水量的若干问题[J].中国科学院上海天文台年刊,2003,24:20-27.
[11] Boehm J, Heinkelmann R,Schuh H.A Global Mode of Pressure and Temperature for Geodetic Applications[J].Journal of Geodesy,2007,81(10):679-683.
[12] 霍艾迪,康相武,刘志丽,等.利用MODIS 数据反演沙漠化地区地表温度的简化模式——以陕西北部地区为例[J].地球科学与环境学报,2009,31(3):306-311.
[13] Gao B C,Goetz A F H.Column Atmospheric Water Vapor and Vegetation Liquid Water Retrievals from Airborne Imaging Spectrometer Data[J].Journal of Geophysical Research,1990,95(D4):3549-3564.
[14] Gao B C,Kaufman Y J.The MODIS Near-IR Water Vapor Algorithm[EB/OL].(2009-06-05)
[2009-11-20].http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod03.pdf.

Memo

Memo:
-
Last Update: 2010-12-20