|Table of Contents|

Indicative Significance of Olivine in Mantle Peridotites(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2011年第01期
Page:
24-33
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Indicative Significance of Olivine in Mantle Peridotites
Author(s):
TANG Yan-jieZHANG Hong-fuYing Ji-fengYANG Wei ZHAO Xin-miaoSU Ben-xunXIAO Yan
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Keywords:
mantle peridotite xenolith olivine geochemistry lithospheric evolution North China Craton
PACS:
P588.12+5
DOI:
-
Abstract:
Since normal mantle has relatively homogeneous δ</sup>7Li, δ<sup>26Mg and δ<sup>57Fe values, the anomalies of these isotopic ratios indicate that the lithospheric mantle must have experienced metasomatism of melts/fluids. The Li, Mg and Fe isotopic characteristics of olivines in peridotite xenoliths from the North China Craton imply that the lithospheric mantle beneath the craton has experienced multistage modification by melts/fluids derived from different sources. Olivine is major mineral in mantle peridotites and pyroxenites. Moreover, olivines usually occur in basaltic rocks as phenocrysts and xenocrysts. Based on the summary of the latest developments of the signatures of major-element(such as Mg and Fe)compositions and Li-Mg-Fe isotopic geochemistry of olivines in the mantle peridotites from the North China Craton, the relationship between olivine geochemistry and the evolution of lithospheric mantle beneath the craton is discussed in detailed. The aim is to deepen the understanding of the evolution history of the lithospheric mantle beneath the North China Craton. The current investigations have shown that the characteristics of mineralogy, elemental and isotopic geochemistry of olivines in mantle-derived peridotites can well indicate the signature of lithospheric mantle and its evolution history, displaying important significance. Olivine Mg# in mantle peridotites can usually reflect the property of lithospheric mantle beneath cratonic areas. The olivines in peridotites from ancient and refractory lithospheric mantle are usually high in Mg#(>92), while those from newly-accreted lithospheric mantle are relatively low in Mg#(<91). As a result, olivine Mg# of mantle peridotites has certain age significance. The Li, Mg and Fe isotopic compositions of olivines in mantle peridotites can efficiently imply the signature of lithospheric mantle and its evolutionary processes.

References:

[1] 翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限[J].中国科学:D辑,2003,33(10):913-920.
[2] 张维萍,赫 英,岳可芬.地幔岩包体中金富集规律——以中国东部地幔岩包体为例[J].地球科学与环境学报,2007,29(2):117-119.
[3] 王新利,杨树生,庞艳春,等.云南金顶铅锌矿床成矿物质来源及有机成矿作用[J].地球科学与环境学报,2009,31(4):376-382.
[4] 毛景文,张建东,郭春丽.斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型:一个新的矿床模型——以德兴地区为例[J].地球科学与环境学报,2010,32(1):1-14.
[5] Griffin W L,O'Reilly S Y.Ryan C G.Composition and Thermal Structure of the Lithosphere Beneath South Africa,Siberia and China:Proton Microprobe Studies[C]∥Committee of International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and Its Environs.International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and Its Environs.Beijing:Committee of International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and Its Environs,1992:65-66.
[6] Pearson D G,Canil D,Shirey S B.Mantle Sample Included in Volcanic Rocks:Xenoliths and Diamonds[C]∥Carlson R W.The Mantle and Core.Oxford:Elsevier,2003:171-275.
[7] Carlson R W,Irving A J,Schulze D J,et al.Timing of Precambrian Melt Depletion and Phanerozoic Refertilization Events in the Lithospheric Mantle of the Wyoming Craton and Adjacent Central Plains Orogen[J].Lithos,2004,77(1/4):453-472.
[8] Foley S F.Rejuvenation and Erosion of the Cratonic Lithosphere[J].Nature Geoscience,2008,1:503-510.
[9] Griffin W L,O'Reilly S Y,Afonso J C,et al.The Composition and Evolution of Lithospheric Mantle:a Re-evaluation and Its Tectonic Implications[J].Journal of Petrology,2009,50(7):1185-1204.
[10] Zheng J P.Comparison of Mantle-derived Materials from Different Spatiotemporal Settings:Implications for Destructive and Accretional Processes of the North China Craton[J].Chinese Science Bulletin,2009,54(19):3397-3416.
[11] Xia Q K,Hao Y T,Li P,et al.Low Water Content of the Cenozoic Lithospheric Mantle Beneath the Eastern Part of the North China Craton[J].Journal of Geophysical Research,2010,115(B07207).DOI:10.1029/2009JB006694.
[12] Xiao Y,Zhang H F,Fan W M,et al.Evolution of Lithospheric Mantle Beneath the Tan-Lu Fault Zone,Eastern North China Craton:Evidence from Petrology and Geochemistry of Peridotite Xenoliths[J].Lithos,2010,117(1/4):229-246.
[13] Xu W L,Yang D B,Gao S,et al.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:the Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning[J].Chemical Geology,2010,270(1/4):257-273.
[14] Lee C T,Yin Q Z,Rudnick R L,et al.Preservation of Ancient and Fertile Lithospheric Mantle Beneath the Southwestern United States[J].Nature,2001,411:69-73.
[15] Ying J F,Zhang H F.Tang Y J.Zoned Olivine Xenocrysts in a Late Mesozoic Gabbro from the Southern Taihang Mountains:Implications for Old Lithospheric Mantle Beneath the Central North China Craton[J].Geological Magazine,2010,147(2):161-170.
[16] 张宏福,英基丰,汤艳杰,等.华北东部中、新生代岩石圈地幔的不均一性:来自橄榄石的组成填图结果[J].岩石学报,2006,22(9):2279-2288.
[17] 汤艳杰,张宏福,英基丰.锂同位素分馏机制讨论[J].地球科学——中国地质大学学报,2009,34(1):43-55.
[18] Tang Y J,Zhang H F,Nakamura E,et al.Multistage Melt/fluid-peridotite Interactions in the Refertilized Lithospheric Mantle Beneath the North China Craton:Constraints from the Li-Sr-Nd Isotopic Disequilibrium Between Minerals of Peridotite Xenoliths[J].Contributions to Mineralogy and Petrology,2010.DOI:10.1007/s00410-010-0568-1.
[19] Zhao X M,Zhang H F,Zhu X K,et al.Iron Isotope Variations in Spinel Peridotite Xenoliths from North China Craton:Implications for Mantle Metasomatism[J].Contributions to Mineralogy and Petrology,2010,160:1-14.
[20] Yang W,Teng F Z,Zhang H F.Chondritic Magnesium Isotopic Composition of the Terrestrial Mantle:a Case Study of Peridotite Xenoliths from the North China Craton[J].Earth and Planetary Science Letters,2009,288(3/4):475-482.
[21] 池际尚,路凤香.华北地台金伯利岩及古生代岩石圈地幔特征[M].北京:科学出版社,1996.
[22] 鄂莫岚,赵大升.中国东部新生代玄武岩及深源岩石包体[M].北京:科学出版社,1987.
[23] Boyd F R.Compositional Distinction Between Oceanic and Cratonic Lithosphere[J].Earth and Planetary Science Letters,1989,96(1/2):15-26.
[24] Griffin W L,O'Reilly S Y,Ryan C G,et al.Secular Variation in the Composition of Subcontinental Lithospheric Mantle:Geophysical and Geodynamic Implications[C]∥Braun J,Dooley J C,Goleby B R,et al.Structure and Evolution of the Australian Continent.Washington DC:American Geophysical Union,1998:1-26.
[25] Tang Y J,Zhang H F,Ying J F,et al.Refertilization of Ancient Lithospheric Mantle Beneath the Central North China Craton:Evidence from Petrology and Geochemistry of Peridotite Xenoliths[J].Lithos,2008,101(3/4):435-452.
[26] Griffin W L,O'Reilly S Y.Ryan C G.The Composition and Origin of Sub-continental Lithospheric Mantle[C]∥Fei Y,Bertka C M,Mysen B O.Mantle Petrology:Field Observations and High-pressure Experimentation(a Tribute to Francis R.(Joe)Boyd).Houston:The Geochemical Society,1999:13-45.
[27] Fan W M,Zhang H F,Baker J,et al.On and off the North China Craton:Where Is the Archaean Keel?[J].Journal of Petrology,2000,41(7):933-950.
[28] Rudnick R L,Gao S,Yuan H L,et al.Persistence of Paleoproterozoic Lithospheric Mantle in the Central Zone of the North China Craton[C]∥IAVCEI. International Conference on Continental Volcanism. Guangzhou:IAVCEI,2006:26.
[29] Xu Y G,Blusztajn J S,Ma J L,et al.Late Archean to Early Proterozoic Lithospheric Mantle Beneath the Western North China Craton:Sr-Nd-Os Isotopes of Peridotite Xenoliths from Yangyuan and Fansi[J].Lithos,2008,102(1/2):25-42.
[30] Walker R J,Carlson R W,Shirey S B,et al.Os,Sr,Nd,and Pb Isotope Systematics of Southern African Peridotite Xenoliths:Implications for the Chemical Evolution of Subcontinental Mantle[J].Geochimica et Cosmochimica Acta,1989,53(7):1583-1595.
[31] 张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式[J].地学前缘,2006,13(2):65-75.
[32] Zhang H F,Goldstein S L,Zhou X H,et al.Evolution of Subcontinental Lithospheric Mantle Beneath Eastern China:Re-Os Isotopic Evidence from Mantle Xenoliths in Paleozoic Kimberlites and Mesozoic Basalts[J].Contributions to Mineralogy and Petrology,2008,155(3):271-293.
[33] Zhang H F.Peridotite-melt interaction:a Key Point for the Destruction of Cratonic Lithospheric Mantle[J].Chinese Science Bulletin,2009,54(19):3417-3437.
[34] Tang Y J,Zhang H F,Ying J F.Asthenosphere-lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains,North China Craton[J].Chemical Geology,2006,233(3/4):309-327.
[35] 汤艳杰,张宏福,英基丰,等.太行山地区中、新生代玄武质岩浆的源区特征与时空演化[J].岩石学报,2006,22(6):1657-1664.
[36] Xu Y G,Huang X L,Menzies M A,et al.Highly Magnesian Olivines and Green-core Clinopyroxenes in Ultrapotassic Lavas from Western Yuannan,China:Evidence for a Complex Hybrid Origin[J].European Journal of Mineralogy,2003,15(6):965-975.
[37] 裴福萍,许文良,王清海,等.鲁西费县中生代玄武岩及幔源捕虏晶的矿物化学:对岩石圈地幔性质的制约[J].高校地质学报,2004,10(1):88-97.
[38] 张宏福,英基丰,徐 平,等.华北中生代玄武岩中地幔橄榄石捕虏晶:对岩石圈地幔置换过程的启示[J].科学通报,2004,49(8):784-789.
[39] 张 瑾,张宏福,英基丰,等.华北晚中生代中基性侵入岩中橄榄岩捕虏体是岩石圈地幔直接样品?[J].岩石学报,2005,21(6):1559-1568.
[40] 汤艳杰,张宏福,英基丰.太行山中段新生代玄武岩中高镁橄榄石捕虏晶:残留古老岩石圈地幔样品[J].岩石学报,2004,20(5):1243-1252.
[41] Qian Q,Hermann J.Formation of High-Mg Diorites Through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths[J].Journal of Petrology,2010,51(7):1381-1416.
[42] Zheng J P,O'Reilly S Y,Griffin W L,et al.Relict Refractory Mantle Beneath the Eastern North China Block:Significance for Lithosphere Evolution[J].Lithos,2001,57(1):43-66.
[43] Gurenko A A,Hansteen T H.Schmincke H U.Evolution of Parental Magmas of Miocene Shield Basalts of Gran Canaria(Canary Islands):Constraints from Crystal,Melt and Fluid Inclusions in Minerals[J].Contributions to Mineralogy and Petrology,1996,124(3/4):422-435.
[44] Zhang H F.Transformation of Lithospheric Mantle Through Peridotite-melt Reaction:a Case of Sino-Korean Craton[J].Earth and Planetary Science Letters,2005,237(3/4):768-780.
[45] Zhang H F,Nakamura E,Sun M,et al.Transformation of Subcontinental Lithospheric Mantle Through Deformation-enhanced Peridotite-melt Reaction:Evidence from a Highly Fertile Mantle Xenolith from the North China Craton[J].International Geology Review,2007,49(7):658-679.
[46] Zhang H F,Goldstein S L,Zhou X H,et al.Comprehensive Refertilization of Lithospheric Mantle Beneath the North China Craton:Further Os-Sr-Nd Isotopic Constraints[J].Journal of the Geological Society,2009,166(2):249-259.
[47] Wunder B,Meixner A,Romer R L,et al.Temperature-de-pendent Isotopic Fractionation of Lithium Between Clinopyroxene and High-pressure Hydrous Fluids[J].Contributions to Mineralogy and Petrology,2006,151(1):112-120.
[48] Chu Z Y,Wu F Y,Walker R J,et al.Temporal Evolution of the Lithospheric Mantle Beneath the Eastern North China Craton[J].Journal of Petrology,2009,50(10):1857-1898.
[49] Zhang H F,Sun M.Geochemistry of Mesozoic Basalts and Mafic Dikes,Southeastern North China Craton,and Tectonic Implications[J].International Geology Review,2002,44(4):370-382.
[50] Zhang H F,Sun M,Zhou X H,et al.Mesozoic Lithosphere Destruction Beneath the North China Craton:Evidence from Major-,Trace-element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts[J].Contributions to Mineralogy and Petrology,2002,144(2):241-254.
[51] Zhang H F,Sun M,Zhou X H,et al.Secular Evolution of the Lithosphere Beneath the Eastern North China Craton:Evidence from Mesozoic Basalts and High-Mg Andesites[J].Geochimica et Cosmochimica Acta,2003,67(22):4373-4387.
[52] Zheng J P,O'Reilly S Y,Griffin W L,et al.Nature and Evolution of Cenozoic Lithospheric Mantle Beneath Shandong Peninsula,Sino-Korean Craton,Eastern China[J].International Geology Review,1998,40(6):471-499.
[53] 郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版,1999.
[54] Song Y,Frey F A.Geochemistry of Peridotite Xenoliths in Basalt from Hannuoba,Eastern China:Implications for Subcontinental Mantle Heterogeneity[J].Geochimica et Cosmochimica Acta,1989,53(1):97-113.
[55] Xu X S,O'Reilly S Y,Griffin W L,et al.The Nature of the Cenozoic Lithosphere of Nushan,Eastern China[C]∥Flower M F J,Chung S L,Lo C H,et al.Mantle Dynamics and Plate Interactions in East Asia.Washington DC:American Geophysical Union,1998:167-196.
[56] Xu Y G.Thermo-tectonic Destruction of the Archean Lithospheric Keel Beneath the Sino-Korean Craton in China:Evidence,Timing and Mechanism.[J].Physics and Chemistry of the Earth A:Solid Earth Geodesy,2001,26(9/10):747-757.
[57] 汤艳杰,张宏福,英基丰,等.橄榄岩-熔体反应过程中微量元素和同位素组成的转变[J].自然科学进展,2007,17(6):748-754.
[58] Zheng J P,Sun M,Zhou M F,et al.Trace Elemental and PGE Geochemical Constraints of Mesozoic and Cenozoic Peridotitic Xenoliths on Lithospheric Evolution of the North China Craton[J].Geochimica et Cosmochimica Acta,2005,69(13):3401-3418.
[59] Ying J F,Zhang H F,Kita N,et al.Nature and Evolution of Late Cretaceous Lithospheric Mantle Beneath the Eastern North China Craton:Constraints from Petrology and Geochemistry of Peridotitic Xenoliths from Junan,Shandong Province,China[J].Earth and Planetary Science Letters,2006,244(3/4):622-638.
[60] Griffin W L,Zhang A D,O'Reilly S Y,et al.Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton[C]∥Flower M F J,Chung S L,Lo C H,et al.Mantle Dynamics and Plate Interactions in East Asia.Washington DC:American Geophysical Union,1998:107-126.
[61] 张宏福,汤艳杰,赵新苗,等.非传统同位素体系在地幔地球化学研究中的重要性及其前景[J].地学前缘,2007,14(2):37-57.
[62] Tang Y J,Zhang H F.Ying J F.Review of the Lithium Isotope System as a Geochemical Tracer[J].International Geology Review,2007,49(4):374-388.
[63] Zhang H F,Deloule E,Tang Y J,et al.Melt/rock Interaction in Remains of Refertilized Archean Lithospheric Mantle in Jiaodong Peninsula,North China Craton:Li Isotopic Evidence[J].Contributions to Mineralogy and Petrology,2010,160(2):261-277.
[64] Tomascak P B.Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences[C]∥Johnson C M,Beard B I,Albarede F.Geoche-mistry of Non-traditional Stable Isotope:Reviews in Mineralogy and Geochemistry.Washington DC:Mineral Society of America,2004:153-195.
[65] Tang Y J,Zhang H F.Ying J F.A Brief Review of Isotopically Light Li:a Feature of the Enriched Mantle?[J].International Geology Review,2010,52(9):964-976.
[66] Tomascak P B,Langmuir C H.Lithium Isotope Variability in MORB[J].Eos Trans AGU,1999,80:F1086-F1087.
[67] Chan L H,Alt J C,Teagle D A H.Lithium and Lithium Isotope Profiles Through the Upper Oceanic Crust:a Study of Seawater-basalt Exchange at ODP Sites 504B and 896A[J].Earth and Planetary Science Letters,2002,201(1):187-201.
[68] Nishio Y,Nakai S,Ishii T,et al.Isotope Systematics of Li,Sr,Nd,and Volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction:Constraints on the Origin of the DUPAL Anomaly[J].Geochimica et Cosmochimica Acta,2007,71(3):745-759.
[69] Tomascak P B,Langmuir C H,Roux P J,et al.Lithium Isotopes in Global Mid-ocean Ridge Basalts[J].Geochimica et Cosmochimica Acta,2008,72(6):1626-1637.
[70] Zack T,Tomascak P B,Rudnick R L,et al.Extremely Light Li in Orogenic Eclogites:the Role of Isotope Fractionation During Dehydration in Subducted Oceanic Crust[J].Earth and Planetary Science Letters,2003,208(3/4):279-290.
[71] Wunder B,Meixner A,Romer R L,et al.Lithium Isotope Fractionation Between Li-bearing Staurolite,Li-mica and Aqueous Fluids:an Experimental Study[J].Chemical Geology,2007,238(3/4):277-290.
[72] Chan L H,Leeman W P,You C F.Lithium Isotopic Composition of Central American Volcanic Arc Lavas:Implications for Modification of Subarc Mantle by Slab-derived Fluids[J].Chemical Geology,1999,160(4):255-280.
[73] Tomascak P B,Widom E,Benton L D,et al.The Control of Lithium Budgets in Island Arcs[J].Earth and Planetary Science Letters,2002,196(3/4):227-238.
[74] Tang Y J,Zhang H F,Nakamura E,et al.Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba,North China Craton:Implications for Melt-rock Interaction in the Considerably Thinned Lithospheric Mantle[J].Geochimica et Cosmochimica Acta,2007,71(17):4327-4341.
[75] Xu Y G.Evidence for Crustal Components in the Mantle and Constraints on Crustal Recycling Mechanisms:Pyroxenite Xenoliths from Hannuoba,North China[J].Chemical Geology,2002,182(2/4):301-322.
[76] Liu Y S,Gao S,Lee C T A,et al.Melt-peridotite Interactions:Links Between Garnet Pyroxenite and High-Mg# Signature of Continental Crust[J].Earth and Planetary Science Letters,2005,234(1/2):39-57.
[77] Pearson N J,Griffin W L,Alard O,et al.The Isotopic Composition of Magnesium in Mantle Olivine:Records of Depletion and Metasomatism[J].Chemical Geology,2006,226(3/4):115-133.
[78] Zhang J,Zhang H F,Kita N,et al.Secular Evolution of the Lithospheric Mantle Beneath the Eastern North China Craton:Evidence from Peridotitic Xenoliths from Late Cretaceous Mafic Rocks in the Jiaodong Region,East-central China[J].International Geology Review,2010,53(2):182-211.
[79] Zhu X K,Guo Y,Williams R J P,et al.Mass Fractionation Processes of Transition Metal Isotopes[J].Earth and Planetary Science Letters,2002,200(1/2):47-62.
[80] Williams H M,Peslier A H,McCammon C,et al.Systematic Iron Isotope Variations in Mantle Rocks and Minerals:the Effects of Partial Melting and Oxygen Fugacity[J].Earth and Planetary Science Letters,2005,235(1/2):435-452.

Memo

Memo:
-
Last Update: 2011-03-20