|Table of Contents|

Simulation Study on Hydrological Response of Water Quantity to Climate Change in Zigetang Lake of Tibetan Plateau During the Past 50 Years(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2011年第03期
Page:
282-287
Research Field:
水资源与环境
Publishing date:

Info

Title:
Simulation Study on Hydrological Response of Water Quantity to Climate Change in Zigetang Lake of Tibetan Plateau During the Past 50 Years
Author(s):
SHEN Hua-dong12YU Ge1
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
climate change precipitation discharge hydrological response numerical simulation SWAT model Zigetang Lake Tibetan Plateau
PACS:
P343.3
DOI:
-
Abstract:
The spatial and attribute databases of soil, vegetation, climate, etc., were built by the means of numerical simulation in Zigetang Lake of Tibetan Plateau; and then, the flows of Zigetang Lake from 1956 to 2006 were simulated by the means of the distributed hydrological model in basin scale(SWAT model); finally, the hydrological processes in Zigetang Lake during the past 50 years were inverted, the effects of sensitive factors including temperature, precipitation and evaporation on the change of lake water quantity were measured, and the responses of lake water quantity to climate change during the past 50 years were discussed. The boundary conditions for running the model were natural topography, soil and vegetation cover, and the soil data included organic matter content, soil particle size and other physical and chemical parameters. The results showed that annual average discharge was 6.3 m3/s and the peak of discharge appeared from August to October, and there was another peak in March because of the supplement of thaw; the simulation result coincided with the remote sensing interpretation; the response of hydrological process to lake discharge was relatively sensitive in plateau lake, such as Zigetang Lake; the discharge in Zigetang Lake was mostly influenced by precipitation, and the discharge increased significantly with the increase of precipitation; the discharge increased insignificantly and the evapotranspiration increased fast when the temperature was high when the temperature increased; however, the discharge in Zigetang Lake increased significantly and the evapotranspiration decreased under the condition of cold and wet model.

References:

[1] IPCC.The Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2007.
[2] Loukas A,Vasiliades L,Dalezios N R.Climatic Impacts on the Runoff Generation Processes in British Columbia,Canada[J].Hydrology and Earth System Sciences,2002,6:211-228.
[3] 吴艳红,朱立平,叶庆华,等.纳木错流域近30年来湖泊-冰川变化对气候的响应[J].地理学报,2007,62(3):301-311.
[4] 鲁安新,姚檀栋,王丽红,等.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土,2005,27(6):783-792.
[5] 朱立平,鞠建廷,王君波,等.湖芯沉积物揭示的末次冰消开始时期普莫雍错湖区环境变化[J].第四纪研究,2006,26(5):772-780.
[6] 朱大岗,孟宪刚,郑达兴,等.青藏高原近25 年来河流、湖泊的变迁及其影响因素[J].地质通报,2007,26(1):22-30.
[7] 类延斌,张虎才,李世杰,等.1950年以来青藏高原兹格塘错碳酸盐稳定碳同位素变化及其原因[J].湖泊科学,2010,22(1):143-150.
[8] 张圣微,雷玉平,姚 琴,等.土地覆被和气候变化对拉萨河流域径流量的影响[J].水资源保护,2010,26(2):39-44.
[9] 沈永平,徐道明.西藏安多的湖泊变化与环境[J].冰川冻土,1994,16(2):173-180.
[10] 贾玉连,王苏民,吴艳宏,等.24ka BP以来青藏高原中部湖泊演化及古降水量研究——以兹格塘错与错鄂为例[J].海洋与湖沼,2003,34(3):283-294.
[11] 赵希涛,朱大岗,严复华,等.西藏纳木错末次间冰期以来的气候变迁与湖面变化[J].第四纪研究,2003,23(1):41-52.
[12] Yu G,Xue B,Liu J,et al.LGM Lake Records from China and an Analysis of Climate Dynamics Using a Modeling Approach[J].Global and Planetary Change,2003,38(3/4):223-256.
[13] 申慧彦,李世杰,于守兵,等.青藏高原兹格塘错沉积物粒度组成及其环境记录的研究[J].第四纪研究,2007,27(4):613-619.
[14] 于守兵,李世杰,刘吉峰.青藏高原湖泊沉积研究及其进展[J].山地学报,2005,23(6):663-671.
[15] Li S J,Li W C,Xia W L,et al.Abrupt Environmental and Climatic Change Events During Holocene Period Derived from Zigetang Lake Sediment,Tibetan Plateau[J].Quaternary International,2007,167(S):240.
[16] 张继承,姜琦刚,李远华,等.基于RS/GIS的西藏地区湖泊变化动态监测及气候背景[J].地球科学与环境学报,2008,30(1):87-93.
[17] 李万春.青藏高原湖泊现代过程研究——以兹格塘错为例[D].北京: 中国科学院研究生院,2001.
[18] 类延斌,张虎才,王 甡,等.青藏高原中部兹格塘错1970年来的湖面变化及原因初探[J].冰川冻土,2009,31(1):48-54.
[19] Smol J P,Wolfe A P,Birks H J B,et al.Climate-driven Regime Shifts in the Biological Communities of Arctic Lakes[J].Proceedings of the National Academy of Sciences,2005,102(12):4397-4402.
[20] Scheffer M,Bascompte J,Brock W A,et al.Early-warning Signals for Critical Transitions[J].Nature,2009,461:53-59.
[21] Zhang X C,Liu W Z.Simulating Potential Response of Hydrology,Soil Erosion and Crop Productivity to Climate Change in Changwu Tableland Region on the Loess Plateau of China[J].Agricultural and Forest Meteorology,2005,131(3/4):127-142.
[22] Arnold J G,Srinivasan R,Muttiah R S,et al.Large Area Hydrologic Modeling and Assessment Part Ⅰ:Model Development[J].Journal of the American Water Resources Association,1998,34(1):73-89.
[23] Legesse D,Vallet-Coulomb C,Gasse F.Hydrological Response of a Catchment to Climate and Land Use Changes in Tropical Africa: Case Study South Central Ethiopia[J].Journal of Hydrology,2003,275(1/2):67-85.
[24] 刘吉峰,李世杰,丁裕国,等.基于气候模式统计降尺度技术的未来青海湖水位变化预估[J].水科学进展,2008,19(2):184-191.
[25] 张 蕾,卢文喜,安永磊,等.SWAT模型在国内外非点源污染研究中的应用进展[J].生态环境学报,2009,18(6):2387-2392.
[26] Lai G Y,Yu G,Gui F.Preliminary Study on Assessment of Nutrient Transport in the Taihu Basin Based on SWAT Modeling[J].Science in China:Series D,2006,49(S):135-145.
[27] 桂 峰,于 革,赖格英,等.洪湖流域自然农耕条件下营养盐沉积输移演化模拟研究[J].沉积学报,2006,24(3):333-338.
[28] 吴春蕾,马友华,李英杰,等.SWAT模型在巢湖流域农业面源污染研究中应用前景与方法[J].中国农学通报,2010,26(18):324-328.
[29] Yu G,Xue B,Lai G Y,et al.A 200-year Historical Modeling of Catchment Nutrient Changes in Taihu Basin,China[J].Hydrobiologia,2007,581(1):79-87.
[30] Gui F,Yu G.Numerical Simulations of Nutrient Transport Changes in Honghu Lake Basin,Jianghan Plain[J].Chinese Science Bulletin,2008,53(15):2353-2363.
[31] 王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
[32] 侯学煜.中国自然地理:植物地理[M].北京:科学出版社,1988.
[33] 中国国家基础信息中心.中国1:250 000地形图[M].北京:中国地图出版社,1999.
[34] 中国科学院青藏高原综合科学考察队.西藏土壤[M].北京:科学出版社,1985.
[35] 国家气象信息中心.中国地面气候资料日值数据(1951—2008):日平均气温、日降水[R].北京:国家气象信息中心,2004.
[36] 中国资源卫星应用中心.中巴卫星(CBERS)兹格塘错流域所在图幅(31°~34°N,90°~92°E)影象资料[R].北京:中国资源卫星应用中心,2010.
[37] Ma R H,Duan H T,Hu C M,et al.A Half-century of Changes in China's Lakes:Global Warming or Human Influence?[J].Geophysical Research Letters,2010,37(L24106).DOI:10.1029/2010GL045514.
[38] Kutzbach J.Estimates of Past Climate at Palaeolake Chad,North Africa,Based on a Hydrological and Energy-balance Model[J].Quaternary Research,1980,14(2):210-223.
[39] 于 革,薛 滨,刘 健,等.中国湖泊演变与古气候动力学研究[M].北京:气象出版社,1991.
[40] 施雅风,贾玉连,于 革,等.40~30 ka BP青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J].湖泊科学,2002,14(1):1-11.
[41] 郑绵平,向 军,魏新俊,等.青藏高原的盐湖[M].北京:北京科学技术出版社,1989.

Memo

Memo:
-
Last Update: 2011-09-20