|Table of Contents|

Application of Geochemistry in Provenance and Depositional Setting Analysis(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2011年第04期
Page:
337-348
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Application of Geochemistry in Provenance and Depositional Setting Analysis
Author(s):
MAO Guang-zhou12LIU Chi-yang2
1. Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, School of Geological Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China; 2. State Key Laboratory of Contine
Keywords:
provenance analysis tectonic setting major element rare earth element trace element fission track isotope geochemistry
PACS:
P512.2;TE121.3
DOI:
-
Abstract:
Provenance analysis is indispensable to basin and palaeogeography analysis, and geochemistry plays an important role in provenance and depositional setting analysis. The related literatures about the application of geochemistry in provenance and depositional setting analysis were studied; major element analysis, rare earth element-trace element analysis and isotope analyses such as fission track, K-Ar, Ar-Ar, Rb-Sr, Sm-Nd, U-Pb, Re-Os, S, O, Si, etc. were discussed, and the advantage and disadvantage of the above methods were analyzed. The results showed that major element analysis and rare earth element-trace element analysis had good application effect on material composition, tectonic setting, weathering intensity, compositional maturity and oxidation-reduction condition of provenance; the isotope analyses had their own advantages in different studies, and all had good application effect. There were many factors on chemical composition of rocks, especially for sedimentary rock, it was easily affected by exogenous effect; geochemistry methods in provenance and depositional setting analysis were few; the research on regional geology was inadequate. Therefore, it is suggested that the factors on chemical composition of clastic sediment should be fully studied when geochemistry methods are used to analyze the provenance and depositional setting, and multiple methods can be synthetically used and the study on regional geology should be paid more attention to.

References:

[1] McLennan S M,Hemming S,McDaniel M J,et al.Geochemical Approaches to Sedimentation,Provenance and Tectonics[C]∥Jonhanson M J.Processes Controlling the Composition of Clastic Sediments.Boulder:Geological Society of America,1993:21-40.
[2] Rollinson H R.Using Geochemical Data:Evaluation,Presentation,Interpretation[M].New York:Longman Scientific Technical,1993.
[3] Taylor S R,Mclennan S M.The Continental Crust:Its Composition and Evolution:an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M].Oxford:Blackwell Scientific Publications,1985.
[4] Girty G H,Hanson A D,Knaack C,et al.Provenance Determined by REE,Th,and Sc Analyses of Metasedimentary Rocks,Boyden Cave Roof Pendant,Central Sierra Nevada,California[J].Journal of Sedimentary Research,1994,64(1):68-73.
[5] 李双应,李任伟,岳书仓,等.安徽肥西中生代碎屑岩地球化学特征及其对物源制约[J].岩石学报,2004,20(3):667-676.
[6] Cox R,Lowe D R,Cullers R L.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States[J].Geochimica et Cosmochimica Acta,1995,59(14):2919-2940.
[7] Prudencio M J,Figueiredo M O,Cabral J M P.Rare Earth Distribution and Its Correlation with Clay Mineralogy in the Clay-sized Fraction of Cretaceous and Pliocene Sediments(Central Portugal)[J].Clay Minerals,1989,24(1):67-74.
[8] Herron M M.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data[J].Journal of Sedimentary Research,1988,58(5):820-829.
[9] Bhatia M R.Plate Tectonics and Geochemical Composition of Sandstones[J].The Journal of Geology,1983,91(6):611-627.
[10] Banerjee D M,Bhattacharya P.Petrology and Geochemistry of Greywackes from the Aravalli Supergroup,Rajasthan,India and the Tectonic Evolution of a Proterozoic Sedimentary Basin[J].Precambrian Research,1994,67(1/2):11-35.
[11] Bhatia M R.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control[J].Sedimentary Geology,1985,45(1/2):97-113.
[12] Roser B P,Korsch R J.Provenance Signatures of Sandstone-mudstone Suites Determined Using Discriminant Function Analysis of Major-element Data[J].Chemical Geology,1988,67(1/2):119-139.
[13] Roser B P,Korsch R J.Determination of Tectonic Setting of Sandstone-mudstone Suites Using SiO2 Content and K2O/Na2O Ratio[J].The Journal of Geology,1986,94(5):635-650.
[14] Nesbitt H W,Young G M.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites[J].Nature,1982,299:715-717.
[15] 梁 斌,王全伟,阚泽忠.珙县恐龙化石埋藏地自流井组泥质岩地球化学特征及其对物源区和古风化作用的指示[J].矿物岩石,2006,26(3):94-99.
[16] Condie K C.Another Look at Rare Earth Elements in Shales[J].Geochimica et Cosmochimica Acta,1991,55(9):2527-2531.
[17] Ortega-Huertas M,Palomo I,Moresi M,et al.A Mineralogical and Geochemical Approach to Establishing a Sedimentary Model in a Passive Continental Margin(Sabbetic Zone,Betic Cordilleras,SE Sepain)[J].Clay Minerals,1991,26(3):389-407.
[18] Crichton J G,Condie K C.Trace Elements as Source Indicators in Cratonic Sediments:a Case Study from the Early Proterozoic Libby Creek Group,Southeastern Wyoming[J].The Journal of Geology,1993,101(3):319-332.
[19] Bhatia M R,Taylor S R.Trace-element Geochemistry and Sedimentary Provinces:a Study from the Tasman Geosyncline,Australia[J].Chemical Geology,1981,33(1/2):115-125.
[20] Nesbitt H W,Markovics G,Price R C.Chemical Processes Affecting Alkalis and Alkaline Earths During Continental Weathering[J].Geochimica et Cosmochimica Acta,1980,44(11):1659-1666.
[21] Morman M D,Deckker D P.Trace Metals in Lacustrine and Marine Sediments:a Case Study from the Gulf of Carpenta-ria,Northern Australia[J].Chemical Geology,1990,82(1):299-318.
[22] Kato Y,Nakao K,Isozaki Y.Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan:Implications for an Oceanic Redox Change[J].Chemical Geology,2002,182(1):15-34.
[23] Nolting R F,Ramkema A,Everaarts J M.The Geochemistry of Cu,Cd,Zn,Ni and Pb in Sediment Cores from the Continental Slope of the Banc d'Arguin(Mauritania)[J].Continental Shelf Research,1999,19(5):665-691.
[24] Taylor S R.Abundance of Chemical Elements in the Continental Crust:a New Table[J].Geochimica et Cosmochimica Acta,1964,28(8):1273-1385.
[25] Orians K J,Boyle E A,Bruland K W.Dissolved Titanium in the Open Ocean[J].Nature,1990,348:322-325.
[26] Murray R W,Knowlton C,Leinen M,et al.Export Production and Terrigenous Matter in the Central Equatorial Pacific Ocean During Interglacial Oxygen Isotope Stage 11[J].Global and Planetary Change,2000,24(1):59-78.
[27] Murray R W,Leinen M.Scavenged Excess Aluminum and Its Relationship to Bulk Titanium in Biogenic Sediment from the Central Equatorial Pacific Ocean[J].Geochimica et Cosmochimica Acta,1996,60(20):3869-3878.
[28] 韦刚健,陈毓蔚,李献华,等.NS93-5钻孔沉积物不活泼微量元素记录与陆源输入变化探讨[J].地球化学,2001,30(3):208-216.
[29] Haskin M A,Haskin L A.Rare Earths in European Shales:a Redetermination[J].Science,1966,154:507-509.
[30] Allegre C J,Minster J F.Quantitative Models of Trace Element Behavior in Magmatic Processes[J].Earth and Planetary Science Letters,1978,38(1):1-25.
[31] Gu X X,Liu J M,Zheng M H,et al.Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan,South China:Geochemical Evidence[J].Journal of Sedimentary Research,2002,72(3):393-407.
[32] Savoy L E,Stevenson R K,Mountjoy E W.Provenance of Upper Devonian-lower Carboniferous Miogeoclinal Strata,Southeastern Canadian Cordillera:Link Between Tectonics and Sedimentation[J].Journal of Sedimentary Research,2000,70(1):181-193.
[33] 卢海峰,王宗起,王 涛,等.西秦岭关家沟组物源分析[J].地质学报,2006,80(4):508-516.
[34] 李秋根,刘树文,韩宝福,等.新疆库鲁克塔格震旦系冰碛岩的地球化学特征及其对物源区的指示[J].自然科学进展,2004,14(9):999-1005.
[35] Gromet L P,Haskin L A,Korotev R L,et al.The “North American Shale Composite”:Its Compilation,Major and Trace Element Characteristics[J].Geochimica et Cosmochimica Acta,1984,48(12):2469-2482.
[36] Wedepohl K H.The Composition of the Continental Crust[J].Geochimica et Cosmochimica Acta,1995,59(7):1217-1232.
[37] Holser W T.Trace Elements and Isotopes in Evaporates[C]∥Burns R G.Mineralogical Society of America Short Course Notes:Volume 6,Marine Minerals.Washington DC:Mineralogical Society of America,1979:295-346.
[38] Bhatia M R,Crook K A W.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins[J].Contributions to Mineralogy and Petrology,1986,92(2):181-193.
[39] Floyd P A,Leveridge B E.Tectonic Environment of the Devonian Gramscatho Basin,South Cornwall:Framework Mode and Geochemical Evidence from Turbiditic Sandstones[J].Journal of the Geological Society,1987,144(4):531-542.
[40] Shao L,Stattegger K,Garbe-Schoenberg C.Sandstone Petro-logy and Geochemistry of the Turpan Basin(NW China):Implications for the Tectonic Evolution of a Continental Basin[J].Journal of Sedimentary Research,2001,71(1):37-49.
[41] Davis C,Pratt L,Silter W,et al.Factors Influencing Organic Carbon and Trace Metal Accumulation inthe Upper Cretaceous La Luna Formation of the Western Maracaibo Basin,Venezuela[M].Boulder:Geological Society of Amrica,1999.
[42] Lewan M D.Factors Controlling the Proportionality of Vanadium to Nickel in Crude Oils[J].Geochimica et Cosmochimica Acta,1984,48(11):2231-2238.
[43] Hurford A J,Carter A.The Role of Fission Track Dating in Discrimination of Provenance[C]∥Haughton D W,Morton A C,Todd S P.Developments in Sedimentary Provenance Studies.London:Oxford University Press,1991:67-78.
[44] Carter A,Moss S J.Combined Detrital-zircon Fission-track and U-Pb Dating:a New Approach to Understanding Hinterland Evolution[J].Geology,1999,27(3):235-238.
[45] Najman Y M R,Pringle M S,Johnson M R W,et al.Laser 40Ar/39Ar Dating of Single Detrital Muscovite Grains from Early Foreland-basin Sedimentary Deposits in India:Implications for Early Himalayan Evolution[J].Geology,1997,25(6):535-538.
[46] Galy A,France-Lanord C,Derry L A.The Late Oligocene-Early Miocene Himalaya Belt Constraints Deduced from Isotopic Compositions of Early Miocene Turbidites in the Bengal Fan[J].Tectonophysics,1996,260(1/2):109-118.
[47] 王岳军,范蔚茗,林 舸.盆地沉积物示踪源区山脉隆升剥露的几种方法[J].地质科技情报,1999,18(2):85-89.
[48] DePaolo D J.Neodymium Isotope Geochemistry:an Introduction[M].Berlin:Springer-Verlag,1988.
[49] McLennan S M,Taylor S R,McCulloch M T,et al.Geochemical and Nd-Sr Isotope Composition of Deep-sea Turbidites:Crustal Evolution and Plate Tectonic Associations[J].Geochimica et Cosmochimica Acta,1990,54(7):2015-2050.
[50] 裴先治,孟 勇,丁仨平,等.祁连—秦岭造山带交接部位25亿年碎屑锆石的发现及其地质意义[J].地球科学与环境学报,2007,29(2):111-116.
[51] 赖绍聪,秦江锋.勉略缝合带三岔子辉绿岩墙锆石U-Pb年龄及Hf同位素组成——古特提斯洋壳俯冲的年代学证据[J].地球科学与环境学报,2010,32(1):27-33.
[52] 刘 飞,陈岳龙,苏本勋,等.松潘—甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究[J].地球学报,2006,27(4):289-296.
[53] Zhou M F,Yan D P,Kennedy A K,et al.SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-magmatism Along the Western Margin of the Yangtze Block,South China[J].Earth and Planetary Science Letters,2002,196(1/2):51-67.
[54] Horan M F,Morgan J W,Grauch R I,et al.Rhenium and Osmium Isotopes in Black Shales and Ni-Mo-PGE-rich Sulfide Layers,Yukon Territory,Canada,and Hunan and Guizhou Provinces,China[J].Geochimica et Cosmochimica Acta,1994,58(1):257-265.
[55] Walker R J,Morgan J W.Rhenium-osmium Isotope Systema-tics of Carbonaceous Chondrites[J].Science,1989,243:519-522.
[56] 张连昌,姬金生,曾章仁,等.东天山康古尔金矿床成矿物源的同位素地球化学特征[J].现代地质,1998,12(3):380-387.
[57] Cullers R L.The Geochemistry of Shales,Siltstones and Sandstones of Pennsylvanian-Permian Age,Colorado,USA:Implications for Provenance and Metamorphic Studies[J].Lithos,2000,51(3):181-203.
[58] 赵红格,刘池洋.物源分析方法及研究进展[J].沉积学报,2003,21(3):409-415.

Memo

Memo:
-
Last Update: 2011-12-20