|Table of Contents|

Sedimentary Geochemistry and Patterns of Organic Matter Enrichment of Wufeng-Longmaxi Formations in the Southern Margin of Sichuan Basin, China —A Case Study of Tianlin Profile in Xuyong Area(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2019年第05期
Page:
541-560
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Sedimentary Geochemistry and Patterns of Organic Matter Enrichment of Wufeng-Longmaxi Formations in the Southern Margin of Sichuan Basin, China —A Case Study of Tianlin Profile in Xuyong Area
Author(s):
ZHENG Yu-long12 MOU Chuan-long2* WANG Xiu-ping2
(1. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China; 2. Key Laboratory of Sedimentary Basin and Oil and Gas Resources of Ministry of Land and Resources, Chengdu Center, China Geological Survey, Chengdu 610081, Sichuan, China)
Keywords:
sedimentary geochemistry Wufeng Formation Longmaxi Formation paleoproductivity paleoredox extinction event organic matter enrichment Sichuan Basin
PACS:
P588.2; P59
DOI:
-
Abstract:
Late Ordovician-Early Silurian transition period is an important geological history period. Global plate tectonics, paleoclimate conditions, paleo-ocean environment and biota types occur during this relatively short period(440-453 Ma). With these great changes, there are two sets of organic-rich shales in Wufeng Formation and Longmaxi Formation in Yangtze area. It is a key exploration layer for shale gas exploration and has received extensive attention. A lot of influencing factors on organic matter enrichment are paleo-ocean primary productivity, palaeoredox facies and sedimentation rate, diagenetic degradation, etc. However, the two sets of organic-rich shales in Wufeng Formation and Longmaxi Formation show strong heterogeneity vertically. Therefore, systematic measuring, continuous sampling and detailed petromineralogy and sedimentary geochemistry(major, trace, and rare earth elements)of Tianlin profile in Xuyong area were conducted in order to make better sense of the evolution of the vertical sedimentary environment and the causes of differences in organic matter enrichment of Wufeng-Longmaxi Formations. The results show that the ratio of Al/(Al+Fe+Mn), Ce anomaly and Eu anomaly indicate that non-terrestrial Si is in biogenic origin; the contents of SiO2 and Sixs are significantly negative correlated with the contents of Ca and TiO2, indicating that silica contents are mainly affected by terrigenous flux and paleo-water depth; the ratios of Mo/TOC and Mo/U indicate that the early period of Wufeng Formation has a strong restricted environment, while the organic-rich intervals form in moderately restricted environment; the intervals with dense bentonite layers have higher paleoproductivity; stronger positive correlation between paleoredox proxy coefficient and TOC indicates that paleoredox is the main controlling factor of organic matter enrichment; due to the different biohabitat types and the different influences of terrigenous flux on paleoproductivity and paleoredox, the correlation between paleoproductivity proxy coefficient and TOC is poor in the mass. A comprehensive analysis suggests that organic matter enrichment patterns in different sedimentary stages of Wufeng-Longmaxi Formations are different. Organic matter enrichment of Wufeng-Longmaxi Formations is mainly affected by anoxic environment, which is caused by deep water environment with low terrigenous flux during non-extinction period. It is mainly affected by high sedimentation rate of bio-precursors, which is caused by explosion of bio-precursors and “marine snow” during the first episode extinction period(corresponding to the terminal period of Wufeng Formation), and is affected by high sedimentation rate of bio-precursors and extremely anoxic environment caused by rapid transgression and organic decomposition during the second extinction period(corresponding to the early period of Longmaxi Formation).

References:

[1] POHL A,NARDIN E,VANDENBROUCKE T R A,et al.High Dependence of Ordovician Ocean Surface Circulation on Atmospheric CO2 Levels[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,458: 图11 五峰组—龙马溪组各阶段有机质富集模式 Fig.11 Organic Matter Enrichment Patterns at Different Stages of Wufeng-Longmaxi Formations 39-51.
[2] HAMBREY M J,CHRISTOFFERSEN P,GLASSER N F,et al.The Late Ordovician Glacial Sedimentary System of the North Gondwana Platform[M].Oxford:Blackwell,2009.
[3] LOI A,GHIENNE J F,DABARD M P.The Late Ordovician Glacio-eustatic Record from a High-latitude Storm-dominated Shelf Succession:The Bou Ingarf Section(Anti-Atlas,Southern Morocco)[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,296(3/4):332-358.
[4] 董大忠,高世葵,黄金亮,等.论四川盆地页岩气资源勘探开发前景[J].天然气工业,2014,34(12):1-15. DONG Da-zhong,GAO Shi-kui,HUANG Jin-liang,et al.A Discussion on the Shale Gas Exploration and Development Prospect in the Sichuan Basin[J].Natural Gas Industry,2014,34(12):1-15.
[5] 王玉满,李新景,董大忠,等.上扬子地区五峰组—龙马溪组优质页岩沉积主控因素[J].天然气工业,2017,37(4):9-20. WANG Yu-man,LI Xin-jing,DONG Da-zhong,et al.Main Factors Controlling the Sedimentation of High-quality Shale in Wufeng-Longmaxi Fm,Upper Yangtze Region[J].Natural Gas Industry,2017,37(4):9-20.
[6] 陈孝红,张保民,陈 林,等.鄂西宜昌地区晚奥陶世—早志留世页岩气藏的主控地质因素与富集模式[J].地球学报,2018,39(3):257-268. CHEN Xiao-hong,ZHANG Bao-min,CHEN Lin,et al.Main Geological Controlling Factors and Enrichment Pattern of Shale Gas Reservoirs in the Late Ordovician-Early Silurian Strata of Yichang,Western Hubei Province[J].Acta Geoscientica Sinica,2018,39(3):257-268.
[7] 苏文博,李志明,ETTENSOHN F R,等.华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J].地球科学,2007,32(6):819-827. SU Wen-bo,LI Zhi-ming,ETTENSOHN F R,et al.Distribution of Black Shale in the Wufeng-Longmaxi Formations(Ordovician-Silurian),South China:Major Controlling Factors and Implications[J].Earth Science,2007,32(6):819-827.
[8] 牟传龙,王秀平,王启宇,等.川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系[J].古地理学报,2016,18(3):457-472. MOU Chuan-long,WANG Xiu-ping,WANG Qi-yu,et al.Relationship Between Sedimentary Facies and Shale Gas Geological Conditions of the Lower Silurian Longmaxi Formation in Southern Sichuan Basin and Its Adjacent Areas[J].Journal of Palaeogeography,2016,18(3):457-472.
[9] 王涛利,郝爱胜,陈 清,等.中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J].天然气地球科学,2018,29(5):616-631. WANG Tao-li,HAO Ai-sheng,CHEN Qing,et al.The Study of Main Factors Controlling the Development of Wufeng Formation and Longmaxi Formation Organic-rich Shales in the Yichang Area,Middle Yangtze Region[J].Natural Gas Geoscience,2018,29(5):616-631.
[10] 吴蓝宇,陆永潮,蒋 恕,等.上扬子区奥陶系五峰组—志留系龙马溪组火山活动对页岩有机质富集程度的影响[J].石油勘探与开发,2018,45(5):1-11. WU Lan-yu,LU Yong-chao,JIANG Shu,et al.Effects of Volcanic Activities in Ordovician Wufeng-Silurian Longmaxi Period on Organic-rich Shale in the Upper Yangtze Area,South China[J].Petroleum Exploration and Development,2018,45(5):1-11.
[11] 李双建,肖开华,沃玉进,等.南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J].沉积学报,2008,26(5):872-880. LI Shuang-jian,XIAO Kai-hua,WO Yu-jin,et al.Developmental Controlling Factors of Upper Ordovician-Lower Silurian High Quality Source Rocks in Marine Sequence,South China[J].Acta Sedimentologica Sinica,2008,26(5):872-880.
[12] 李艳芳,邵德勇,吕海刚,等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483. LI Yan-fang,SHAO De-yong,LU Hai-gang,et al.A Relationship Between Elemental Geochemical Characteristics and Organic Matter Enrichment in Marine Shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(12):1470-1483.
[13] 刘宝珺,许效松,潘杏南,等.中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社,1993. LIU Bao-jun,XU Xiao-song,PAN Xing-nan,et al.Depositional Crustal Evolution and Mineralization of Paleo-continent in Southern China[M].Beijing:Science Press,1993.
[14] 牟传龙,周恳恳,梁 薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532. MOU Chuan-long,ZHOU Ken-ken,LIANG Wei,et al.Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration[J].Acta Geologica Sinica,2011,85(4):526-532.
[15] 周恳恳,牟传龙,许效松,等.华南中上扬子早志留世古地理与生储盖层分布[J].石油勘探与开发,2014,41(5):623-632. ZHOU Ken-ken,MOU Chuan-long,XU Xiao-song,et al.Early Silurian Paleogeography and Source-reservoir-cap Rocks of the Middle-Upper Yangtze Region in South China[J].Petroleum Exploration and Development,2014,41(5):623-632.
[16] GB/T 19145—2003,沉积岩中总有机碳的测定[S]. GB/T 19145—2003,Determination of Total Organic Carbon in Sedimentary Rock[S].
[17] 尹 明,李家熙.岩石矿物分析[M].4版.北京:地质出版社,2011. YIN Ming,LI Jia-xi.Rock and Mineral Analysis[M].4th ed.Beijing:Geological Publishing House,2011.
[18] GB/T 14506.28—2010,硅酸盐岩石化学分析方法第28部分:16个主次成分量测定[S]. GB/T 14506.28—2010,Methods for Chemical Analysis of Silicate Rocks,Part 28:Determination of 16 Major and Minor Elements Content[S].
[19] GB/T 14506.30—2010,硅酸盐岩石化学分析方法第30部分:44个元素量测定[S]. GB/T 14506.30—2010,Methods for Chemical Analysis of Silicate Rocks,Part 30:Determination of 44 Elements Content[S].
[20] PI D H,LIU C Q,SHIELDS-ZHOU G A,et al.Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province,South China:Constraints for Redox Environments and Origin of Metal Enrichments[J].Precambrian Research,2013,225:218-229.
[21] LI Y,ZHANG T,ELLIS G,et al.Depositional Environment and Organic Matter Accumulation of Upper Ordovician-Lower Silurian Marine Shale in the Upper Yangtze Platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:252-264.
[22] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1):12-32.
[23] ALGEO T J,MAYNARD J B.Trace-element Beha-vior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-type Cyclothems[J].Chemical Geo-logy,2004,206(3/4):289-318.
[24] HASKIN L A,HASKIN M A,FREY F A,et al.Re-lative and Absolute Terrestrial Abundances of the Rare Earths[M]∥AHRENS L H.Origin and Distribution of the Elements.Oxford:Pergamon Press,1968:889-912.
[25] TAYLOR S R,MCLENNAN S M.The Continental Crust:Its Composition and Evolution[J].The Journal of Geology,1985,94(4):57-72.
[26] 邱 振,谈 昕,卢 斌,等.四川盆地巫溪地区五峰组—龙马溪组硅质岩地球化学特征[J].矿物岩石地球化学通报,2018,37(5):880-887. QIU Zhen,TAN Xin,LU Bin,et al.Geochemical Characteristics of Cherts from the Wufeng and Longmaxi Formations in the Wuxi Area,Sichuan Basin[J].Bulletin of Mineralogy,Petrology and Geochemistry,2018,37(5):880-887.
[27] ADACHI M,YAMAMOTO K,SUGISAKI R.Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity[J].Sedimentary Geology,1986,47(1/2):125-148.
[28] MURRAY R W.Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications[J].Sedimentary Geology,1994,90(3/4):213-232.
[29] 李 娟,于炳松,郭 峰.黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J].沉积学报,2013,31(1):20-31. LI Juan,YU Bing-song,GUO Feng.Depositional Setting and Tectonic Background Analysis on Lower Cambrian Black Shales in the North of Guizhou Province[J].Acta Sedimentologica Sinica,2013,31(1):20-31.
[30] 高 亮,孙 波,王延章.渤海湾盆地东营凹陷南坡沙四上亚段滩坝沉积特征及控制因素[J].石油实验地质,2018,40(5):669-675. GAO Liang,SUN Bo,WANG Yan-zhang.Sedimentary Characteristics and Controlling Factors of Beach-bar Sandstones of the Upper Section of the Fourth Member of Shahejie Formation on the Southern Slope of Dongying Sag,Bohai Bay Basin[J].Petroleum Geology and Experiment,2018,40(5):669-675.
[31] 何卫红,汪啸风,卜建军.晚奥陶世五峰期扬子海盆海平面变化旋回与古水体深度[J].沉积学报,2002,20(3):367-375. HE Wei-hong,WANG Xiao-feng,BU Jian-jun.The Eustatic Cycles and the Depth of Water Mass of the Latest Ordovician Wufengian in the Yangtze Basin[J].Acta Sedimentologica Sinica,2002,20(3):367-375.
[32] ALGEO T J,KUWAHARA K,SANO H,et al.Spatial Variation in Sediment Fluxes,Redox Conditions and Productivity in the Permian-Triassic Panthalassic Ocean[J].Palaeogeography,Palaeoclimatology,Palaeo-ecology,2011,308(1):65-83.
[33] PAYTAN A,GRIFFITH E M.Marine Barite:Recorder of Variations in Ocean Export Productivity[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2007,54(5/6/7):687-705.
[34] DYMOND J,SUESS E,LYLE M.Barium in Deep-sea Sediment:A Geochemical Proxy for Paleoproductivity[J].Paleoceanography,1992,7(2):163-181.
[35] MARZ C,POULTON S W,WAGNER T,et al.Phosphorus Burial and Diagenesis in the Central Bering Sea(Bowers Ridge,IODP Site U1341):Perspectives on the Marine P Cycle[J].Chemical Geology,2014,363:270-282.
[36] 陈 慧,解习农,李红敬,等.利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J].古地理学报,2010,12(3):324-333. CHEN Hui,XIE Xi-nong,LI Hong-jing.et al.Evaluation of the Permian Marine Hydrocarbon Source Rocks at Shangsi Section in Sichuan Province Using Multi-proxies of Paleoproductivity and Paleoredox[J].Journal of Palaeogeography,2010,12(3):324-333.
[37] ALGEO T J,ROWE H.Paleocean Ographic Applications of Trace-metal Concentration Data[J].Chemical Geology,2012,324/325:6-18.
[38] 陆扬博,马义权,王雨轩,等.上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应[J].地球科学,2017,42(7):1169-1184. LU Yang-bo,MA Yi-quan,WANG Yu-xuan,et al.The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area[J].Earth Science,2017,42(7):1169-1184.
[39] HATCH J R,LEVENTHAL J S.Relationship Between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A.[J].Chemical Geology,1992,99(1/2/3):65-82.
[40] JONES B,MANNING D A C.Comparison of Geochemical Indices Used for the Interpretation of Paleo-redox Conditions in Ancient Mudstones[J].Chemical Geo-logy,1994,111(1/2/3/4):111-129.
[41] TRIBOVILLARD N,ALGEO T J,BAUDIN F,et al.Analysis of Marine Environmental Conditions Based on Molybdenum-uranium Covariation:Applications to Mesozoic Paleoceanography[J].Chemical Geology,2012,324/325:46-58.
[42] 李艳芳,吕海刚,张 瑜,等.四川盆地五峰组—龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J].地球化学,2015,44(2):109-116. LI Yan-fang,LU Hai-gang,ZHANG Yu,et al.U-Mo Covariation in Marine Shales of Wufeng-Longmaxi Formations in Sichuan Basin,China and Its Implication for Identification of Watermass Restriction[J].Geochimica,2015,44(2):109-116.
[43] 谢树成,颜佳新,史晓颖,等.烃源岩地球生物学[M].北京:科学出版社,2016. XIE Shu-cheng,YAN Jia-xin,SHI Xiao-ying,et al.Geobiology of Hydrocarbon Source Rocks[M].Beijing:Science Press,2016.
[44] ZIEGLER A M.Silurian Marine Communities and Their Environmental Significance[J].Nature,1965,207:270-272.
[45] 殷鸿福,丁梅华,张克信.扬子区及其周缘东吴—印支期生态地层学[M].北京:科学出版社,1995. YIN Hong-fu,DING Mei-hua,ZHANG Ke-xin.Dongwuan-Indosinian Ecostratigraphy of the Yangtze Region and Its Margins[M].Beijing:Science Press,1995.
[46] 陈 旭.论笔石的深度分带[J].古生物学报,1990,29(5):507-526. CHEN Xu.Graptolite Depth Zonation[J].Acta Palaeontologica Sinica,1990,29(5):507-526.
[47] 于炳松,陈建强,李兴武,等.塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J].沉积学报,2004,22(1):59-66. YU Bing-song,CHEN Jian-qiang,LI Xing-wu,et al.Rare Earth and Trace Element Patterns in Bedded-cherts from the Bottom of the Lower Cambrian in the Northern Tarim Basin,Northwest China:Implication for Depositional Environments[J].Acta Sedimentologica Sinica,2004,22(1):59-66.
[48] 王玉满,陈 波,李新景,等.川东北地区下志留统龙马溪组上升洋流相页岩沉积特征[J].石油学报,2018,39(10):1092-1102. WANG Yu-man,CHEN Bo,LI Xin-jing,et al.Sedimentary Characteristics of Up-welling Facies Shale in Lower Silurian Longmaxi Formation,Northeast Sichuan Area[J].Acta Petrolei Sinica,2018,39(10):1092-1102.
[49] 吴智平,周瑶琪.一种计算沉积速率的新方法:宇宙尘埃特征元素法[J].沉积学报,2000,18(3):395-399. WU Zhi-ping,ZHOU Yao-qi.Using the Characteristic Elements from Meteoritic Must in Strata to Calculate Sedimentation Rate[J].Acta Sedimentologica Sinica,2000,18(3):395-399.
[50] LEO P D,DINELLI E,MONGELLI G,et al.Geology and Geochemistry of Jurassic Pelagic Sediments,Scisti Silicei Formation,Southern Apennines,Italy[J].Sedimentary Geology,2002,150(3/4):229-246.
[51] 陈 旭,戎嘉余,樊隽轩,等.奥陶系上统赫南特阶全球层型剖面和点位的建立[J].地层学杂志,2006,30(4):289-305. CHEN Xu,RONG Jia-yu,FAN Jun-xuan,et al.A Final Report on the Global Stratotype Section and Point(GSSP)for the Hirnantian Stage(Upper Ordovician)[J].Journal of Stratigraphy,2006,30(4):289-305.
[52] 杜远生,童金南.古生物地史学概论[M].武汉:中国地质大学出版社,2010. DU Yuan-sheng,TONG Jin-nan.Introduction to the Paleontology[M].Wuhan:China University of Geosciences Press,2010.
[53] 李 越,冯洪真,李 军.底栖藻对扬子地台西缘晚奥陶世生态危机的改善作用[J].古生物学报,2002,41(2):211-218. LI Yue,FENG Hong-zhen,LI Jun.Benthic Algae in Improvement of Ecologic Crisis of the Late Ordovician in the West Margin of the Yangtze Platform[J].Acta Palaeontologica Sinica,2002,41(2):211-218.
[54] 陈 超,牟传龙,梁 薇,等.川南—黔北地区晚奥陶世凯迪期早期与凯迪期晚期岩相古地理[J].古地理学报,2014,16(5):641-654. CHEN Chao,MOU Chuan-long,LIANG Wei,et al.Lithofacies Palaeogeography of the Early Katian and Late Katian of Late Ordovician in Southern Sichuan-northern Guizhou Provinces[J].Journal of Palaeogeography,2014,16(5):641-654.
[55] 涂 珅,王 舟,王家生.宜昌王家湾奥陶系—志留系界线地层高分辨率碳、氧稳定同位素记录及其成因[J].地球科学,2012,37(2):165-174. TU Shen,WANG Zhou,WANG Jia-sheng.Interpretation for High Resolution Stable Carbon and Oxygen Isotope Records Across Ordovician-Silurian Boundary from Wangjiawan,South China[J].Earth Science,2012,37(2):165-174.
[56] 李 超,程 猛,ALGEO T J,等.早期地球海洋水化学分带的理论预测[J].中国科学:地球科学,2015,45(12):1829-1838. LI Chao,CHENG Meng,ALGEO T J,et al.A Theoretical Prediction of Chemical Zonation in Early Oceans[J].Science China:Earth Sciences,2015,45(12):1829-1838.
[57] MACQUAKER J H S,KELLER M A.Mudstone Sedimentation at High Latitudes:Ice as a Transport Medium for Mud and Supplier of Nutrients[J].Journal of Sedimentary Research,2005,75(4):696-709.

Memo

Memo:
-
Last Update: 2019-09-19