|Table of Contents|

Si Contents and Their Geological Significance of Yukahe Ultrahigh-pressure Metamorphic(UHPM)Rutile in the Northern Qaidam Basin, NW China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2020年第02期
Page:
215-230
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Si Contents and Their Geological Significance of Yukahe Ultrahigh-pressure Metamorphic(UHPM)Rutile in the Northern Qaidam Basin, NW China
Author(s):
SUN Hui12 CHEN Dan-ling12* REN Yun-fei12 WANG Hai-jie12
(1. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, Shaanxi, China; 2. Department of Geology, Northwest University, Xi'an 710069, Shaanxi, China)
Keywords:
Key words:rutile eclogite garnet amphibole albitite ultrahigh-pressure metamorphism in-situ LA-ICP-MS analysis trace element the northern Qaidam Basin
PACS:
P578.4+7
DOI:
10.19814/j.jese.2019.12011
Abstract:
An integrated study of mineralogy and in-situ LA-ICP-MS trace element analysis was conducted on rutiles from Yukahe ultrahigh-pressure metamorphic(UHPM)phengite eclogite and garnet amphibole albitite in the northern Qaidam Basin, NW China. The results show that rutiles from these two UHPM rocks have high Si contents, and during the metamorphic evolution of phengite eclogite, Si contents of rutile grains grown in different metamorphic stages as well as the core and rim parts of a single rutile grain change regularly with metamorphic pressure. The Si contents in prograde rutiles, which occur as inclusions in garnet, omphacite and phengite core, increase gradually from core((342-360)×10-6)to rim; the Si contents in peak rutiles, which coexist with garnet, omphacite and phengite in matrix or occur as inclusions in garnet mantle and rim, have the highest Si contents with an average value of 952×10-6 and a maximum value of 2 397×10-6; the Si contents in retrograde rutiles, which coexist symplectite with amphibole+plagioclase formed by omphacite decomposition or occur in phengite+quartz veins of eclogite, decrease gradually from core towards rim(the average Si content of symplectite is 726×10-6, and that of microveins is 674×10-6). Rutiles in garnet amphibole albitite mainly occur as inclusions in phengite, garnet, amphibole and albite, and the rutiles in different occurrences have obviously higher Si contents(1 808×10-6 on average)than those from phengite eclogite(762×10-6 on average). In which, the rutiles included in phengite have Si contents of(1 018-2 741)×10-6 with an average value of 1 924×10-6, whereas the rutiles hosted by albite have variable Si contents of(685-3 910)×10-6 with an average value of 1 761×10-6. Combined with the occurrences, metamorphic evolutions and whole rock compositons of phengite eclogite and garnet amphibole albitite as well as the previous results on Si-bearing rutiles of ultrahigh-pressure eclogites in Dabie-Sulu orogenic belt, it is proposed that Si contents of rutiles from UHPM rocks are positively correlated with metamorphic pressure, and the rutiles with high-Si content(>500×10-6)may be a fingerprint for eclogite experiencing ultrahigh-pressure metamorphism; the whole rock SiO2 and TiO2 contents affect the Si contents of rutiles under the same ultrahigh metamorphic pressure, and the Si contents of rutiles increase as whole SiO2 rises and TiO2 decreases.

References:

[1] BRENAN J M,SHAW H F,PHINNEY D L,et al.Rutile-aqueous Fluid Partitioning of Nb,Ta,Hf,Zr,U and Th:Implications for High Field Strength Element Depletions in Island-arc Basalts[J].Earth and Planetary Science Letters,1994,128(3/4):327-339.
[2] MURAD E,CASHION J D,NOBLE C J,et al.The Chemical State of Fe in Rutile from an Albitite in Norway[J].Mineralogical Magazine,1995,59:557-560.
[3] SMITH D C,PERSEIL E A.Sb-rich Rutile in the Manganese Concentrations at St Marcel-praborna,Aosta Valley,Italy:Petrology and Crystal-chemistry[J].Mineralo-gical Magazine,1997,61:655-669.
[4] ZACK T,KRONZ A,FOLEY S F,et al.Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists[J].Chemical Geology,2002,184(1/2):97-122.
[5] XIAO Y L,SUN W D,HOEFS J,et al.Making Continental Crust Through Slab Melting:Constraints from Niobium-tantalum Fractionation in UHP Metamorphic Rutile[J].Geochimica et Cosmochimica Acta,2006,70(18):4770-4782.
[6] XIONG X L.Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-bearing Hydrous Eclogite[J].Geology,2006,34(11):945-948.
[7] GAO J,JOHN T,KLEMD R,et al.Mobilization of Ti-Nb-Ta During Subduction:Evidence from Rutile-bearing Dehydration Segregations and Veins Hosted in Eclogite,Tianshan,NW China[J].Geochimica et Cosmochimica Acta,2007,71(20):4974-4996.
[8] ZHANG Z M,SHEN K,SUN W D,et al.Fluids in Deeply Subducted Continental Crust:Petrology,Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen,Eastern China[J].Geo-chimica et Cosmochimica Acta,2008,72(13):3200-3228.
[9] LIANG J L,DING X,SUN X M,et al.Nb/Ta Fractionation Observed in Eclogites from the Chinese Continental Scientific Drilling Project[J].Chemical Geo-logy,2009,268(1/2):27-40.
[10] HUANG J,XIAO Y L,GAO Y,et al.Nb-Ta Fractionation Induced by Fluid-rock Interaction in Subduction-zones:Constraints from UHP Eclogite- and Vein-hosted Rutile from the Dabie Orogen,Central-eastern China[J].Journal of Metamorphic Geology,2012,30(8):821-842.
[11] ZHANG G B,NIU Y L,SONG S G,et al.Trace Element Behavior and P-T-t Evolution During Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt(NW China):Implications for Adakite Genesis[J].Lithos,2015,226:65-80.
[12] RUDNICK R L,BARTH M,HORN I,et al.Rutile-bearing Refractory Eclogites:Missing Link Between Con-tinents and Depleted Mantle[J].Science,2000,287:278-281.
[13] AULBACH S,O'REILLY S Y,GRIFFIN W L,et al.Subcontinental Lithospheric Mantle Origin of High Niobium/Tantalum Ratios in Eclogites[J].Nature Geo-science,2008,1(7):468-472.
[14] KALFOUN F,IONOV D,MERLET C.HFSE Residence and Nb/Ta Ratios in Metasomatised,Rutile-bearing Mantle Peridotites[J].Earth and Planetary Science Letters,2002,199(1/2):49-65.
[15] ZACK T,EYNATTEN H V,KRONZ A.Rutile Geochemistry and Its Potential Use in Quantitative Pro-venance Studies[J].Sedimentary Geology,2004,171(1/2/3/4):37-58.
[16] TRIEBOLD S,EYNATTEN H V,LUVIZOTTO G L,et al.Deducing Source Rock Lithology from Detrital Rutile Geochemistry:An Example from the Erzgebirge,Ger-many[J].Chemical Geology,2007,244(3/4):421-436.
[17] MEINHOLD G,ANDERS B,KOSTOPOULOS D,et al.Rutile Chemistry and Thermometry as Provenance Indicator:An Example from Chios Island,Greece[J].Sedimentary Geology,2008,203(1/2):98-111.
[18] ROZENDAAL A,PHILANDER C,CARELSE C.Cha-racteristics,Recovery and Provenance of Rutile from the Namakwa Sands Heavy Mineral Deposit,South Africa[J].The Journal of the Southern African Institute of Mining and Metallurgy,2010,110:67-74.
[19] 王汝成,王 硕,邱检生,等.CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J].岩石学报,2005,21(2):465-474.
WANG Ru-cheng,WANG Shuo,QIU Jian-sheng,et al.Rutile in the UHP Eclogites from the CCSD Main Drillhole(Donghai,Eastern China):Trace-element Geochemistry and Metallogenetic Implications[J].Acta Petrologica Sinica,2005,21(2):465-474.
[20] ZACK T,MORAES R,KRONZ A.Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer[J].Contributions to Mineralogy and Petrology,2004,148(4):471-488.
[21] WATSON E B,WARK D A,THOMAS J B.Crystallization Thermometers for Zircon and Rutile[J].Contributions to Mineralogy and Petrology,2006,151(4):413-433.
[22] FERRY J M,WATSON E B.New Thermodynamic Mo-dels and Revised Calibrations for the Ti-in-zircon and Zr-in-rutile Thermometers[J].Contributions to Mine-ralogy and Petrology,2007,154(4):429-437.
[23] TOMKINS H S,POWELL R,ELLIS D J.The Pressure Dependence of the Zirconium-in-rutile Thermometer[J].Journal of Metamorphic Geology,2007,25(6):703-713.
[24] ZHANG G B,ELLIS D J,CHRISTY A G,et al.Zr-in-rutile Thermometry in HP/UHP Eclogites from Western China[J].Contributions to Mineralogy and Petrology,2010,160(3):427-439.
[25] SENGUN F.Zr-in-rutile Thermometry of Eclogites from the Karakaya Complex in NW Turkey:Implications for Rutile Growth During Subduction Zone Metamorphism[J].Geochemistry,2017,77(1):95-104.
[26] LI Q L,WEI L,WEN S,et al.SIMS U-Pb Rutile Age of Low-temperature Eclogites from Southwestern Chinese Tianshan,NW China[J].Lithos,2011,122(1/2):76-86.
[27] RAGOZIN A L,ZEDGENIZOV D A,SHATSHII V S,et al.U-Pb Age of Rutile from the Eclogite Xenolith of the Udachnaya Kimberlite Pipe[J].Doklady Earth Sciences,2014,457(1):861-864.
[28] 侯晨阳,杨天水,石玉若.大别超高压变质带榴辉岩中金红石SHRIMP原位U-Pb定年及其年代学意义[J].地球科学与环境学报,2016,38(3):334-340.
HOU Chen-yang,YANG Tian-shui,SHI Yu-ruo.In-situ SHRIMP U-Pb Dating of Rutiles in Eclogite from Dabie UHP Metamorphic Belt and Its Geochronological Significance[J].Journal of Earth Sciences and Environment,2016,38(3):334-340.
[29] CHOUKROUN M,O'REILLY S Y,GRIFFIN W L,et al.Hf Isotopes of MARID(Mica-amphibole-rutile-ilmenite-diopside)Rutile Trace Metasomatic Processes in the Lithospheric Mantle[J].Geology,2005,33(1):45-48.
[30] 肖益林,黄 建,刘 磊,等.金红石:重要的地球化学信息库[J].岩石学报,2011,27(2):398-416.
XIAO Yi-lin,HUANG Jian,LIU Lei,et al.Rutile:An Important “Reservoir” for Geochemical Information[J].Acta Petrologica Sinica,2011,27(2):398-416.
[31] SCHULZE D J.Silicate-bearing Rutile-dominated No-dules from South African Kimberlites,Metasomatised Cumulates[J].American Mineralogist,1990,75:97-104.
[32] MPOSKOS E D,KOSTOPOULOS D K.Diamond,Former Coesite and Supersilicic Garnet in Metasedimentary Rocks from the Greek Rhodope:A New Ultrahigh-pressure Metamorphic Province Established[J].Earth and Planetary Science Letters,2001,192(4):497-506.
[33] YANG J S,BAI W J,FANG Q S,et al.Silicon-rutile:An Ultra-high Pressure(UHP)Mineral from an Ophiolite[J].Progress in Nature Science,2003,13(7):528-531.
[34] 朱 柯,梁金龙,沈 骥,等.大别—苏鲁超高压榴辉岩中富Si金红石的地球化学意义[J].地学前缘,2017,24(3):288-300.
ZHU Ke,LIANG Jin-long,SHEN Ji,et al.Geochemical Significance of Silicon-bearing Rutile in Eclogites from Dabie-Sulu Ultrahigh Pressure Metamorphic Terrane[J].Earth Science Frontiers,2017,24(3):288-300.
[35] CARSWELL D A,O'BRIEN P J,WILSON R N,et al.Thermobarometry of Phengite-bearing Eclogites in the Dabie Mountains of Central China[J].Journal of Metamorphic Geology,1997,15(2):239-252.
[36] KATAYAMA I,PARKINSON C D,OKAMOTO K,et al.Supersilic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif,Kazakhstan[J].American Mineralogist,2000,85:1368-1374.
[37] YE K,CONG B L,YE D N.The Possible Subduction of Continental Material to Depths Greater Than 200 km[J].Nature,2000,407:734-736.
[38] DOBRZHINETSKAYA L F,SCHWEINEHAGE R,MASSONNE H J,et al.Silica Precipitates in Omphacite from Eclogite at Alpe Arami,Switzerland:Evidence of Deep Subduction[J].Journal of Metamorphic Geology,2002,20(5):481-492.
[39] OGASAWARA Y,FUKASAWA K,MARUYAMA S.Coesite Excolution from Supersilicic Titanite in UHP Marble from the Kokchetav Massif,Northern Kazakhstan[J].American Mineralogist,2002,87:454-461.
[40] 刘 良,陈丹玲,张安达,等.阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩:石榴子石出溶单斜辉石的证据[J].中国科学:D辑,地球科学,2005,35(2):105-114.
LIU Liang,CHEN Dan-ling,ZHANG An-da,et al.UHP(>7 GPa)Gneissic K-feldspar Pyroxenite:Evidence from Clinopyroxene Exsolutions in Garnet[J].Scicence in China:Series D,Earth Sciences,2005,35(2):105-114.
[41] SONG S G,ZHANG L F,CHEN J,et al.Sodic Amphi-bole Exsolutions in Garnet from Garnet-peridotite,North Qaidam UHPM Belt,NW China:Implications for Ultradeep-origin and Hydroxyl Defects in Mantle Garnets[J].American Mineralogist,2005,90:814-820.
[42] 梁金龙,孙晓明,徐 莉,等.CCSD超高压变质岩绿辉石中的石英出溶体及其大陆动力学意义[J].地质学报,2006,80(12):1904-1910.
LIANG Jin-long,SUN Xiao-ming,XU Li,et al.Quartz Exsolutions in Omphacites of Ultrahigh Pressure Metamorphic Rocks from CCSD and Its Significance of Geodynamics[J].Acta Geologica Sinica,2006,80(12):1904-1910.
[43] LIU L,ZHANG J F,GREEN H W,et al.Evidence of Former Stishovite in Metamorphosed Sediments,Implying Subduction to >350 km[J].Earth and Planetary Science Letters,2007,263(3/4):180-191.
[44] LIU L,ZHANG J F,CAO Y T,et al.Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh,Western China[J].Earth and Planetary Science Letters,2018,484:353-362.
[45] 陈丹玲,孙 勇,刘 良,等.柴北缘鱼卡河榴辉岩的变质演化:石榴石成分环带及矿物反应结构的证据[J].岩石学报,2005,21(4):1039-1048.
CHEN Dan-ling,SUN Yong,LIU Liang,et al.Metamorphic Evolution of the Yuka Eclogite in the North Qaidam,NW China:Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock[J].Acta Petrologica Sinica,2005,21(4):1039-1048.
[46] REN Y F,CHEN D L,KELSEY D E,et al.Petrology and Geochemistry of the Lawsonite(Pseudomorph)-bearing Eclogite in Yuka Terrane,North Qaidam UHPM Belt:An Eclogite Facies Metamorphosed Oceanic Slice[J].Gondwana Research,2017,42:220-242.
[47] REN Y F,CHEN D L,KELSEY D E,et al.Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-cyclic Orogenic History of the North Qaidam UHPM Belt[J].Journal of Metamorphic Geo-logy,2018,36(4):463-488.
[48] REN Y F,CHEN D L,ZHU X H,et al.Two Orogenic Cycles Recorded by Eclogites in the Yuka-Luofengpo Terrane:Implications for the Mesoproterozoic to Early Paleozoic Tectonic Evolution of the North Qaidam Orogenic Belt,NW China[J].Precambrian Research,2019,DOI:10.1016/j.precamres.2019.105449.
[49] ZHANG G B,SONG S G,ZHANG L F,et al.The Subducted Oceanic Crust Within Continental-type UHP Metamorphic Belt in the North Qaidam,NW China:Evidence from Petrology,Geochemistry and Geochronology[J].Lithos,2008,104(1/2/3/4):99-118.
[50] 张建新,孟繁聪,杨经绥.柴北缘西段榴辉岩相的变质泥质岩:榴辉岩与围岩原地关系的证据[J].中国科学:D辑,地球科学,2004,34(9):825-834.
ZHANG Jian-xin,MENG Fan-cong,YANG Jing-sui.Eclogitic Metapelites in the Western Segment of the North Qaidam Mountains:Evidence on “In-situ” Relationship Between Eclogite and Its Country Rock[J].Science in China:Series D,Earth Sciences,2004,34(9):825-834.
[51] CHEN X,XU R K,SCHERTL H P,et al.Eclogite-facies Metamorphism in Impure Marble from North Qaidam Orogenic Belt:Geodynamic Implications for Early Paleozoic Continental-arc Collision[J].Lithos,2018,310/311:201-224.
[52] 任云飞,陈丹玲,宫相宽,等.柴北缘鱼卡含硬柱石假象榴辉岩的发现、P-T-t轨迹及控制硬柱石形成的主要因素[J].地球科学,2019,44(12):4009-4016.
REN Yun-fei,CHEN Dan-ling,GONG Xiang-kuan,et al.Discovery and P-T-t Paths of Lawsonite Pseudomorph-bearing Eclogites in the Yuka Terrane,North Qaidam Ultrahigh Pressure Metamorphic Belt and Exploration on Key Factors Controlling Lawsonite Formation[J].Earth Science,2019,44(12):4009-4016.
[53] CHEN D L,LIU L,SUN Y,et al.Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane,the North Qaidam,NW China[J].Journal of Asian Earth Sciences,2009,35(3/4):259-272.
[54] SONG S G,SU L,LI X H,et al.Tracing the 850 Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt,NW China[J].Precambrian Research,2010,183(4):805-816.
[55] XIONG Q,ZHENG J P,GRIFFIN W L,et al.Decoup-ling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogen,NE Tibet(China):Tracing the Deep Subduction of Continental Blocks[J].Lithos,2012,155:125-145.
[56] ZHANG G B,IRELANG D,ZHANG L,et al.Zircon Geochemistry of Two Contrasting Types of Eclogite:Implications for the Tectonic Evolution of the North Qaidam UHPM Belt,Northern Tibet[J].Gondwana Research,2016,35:27-39.
[57] ZHANG G B,ELLIS D J,CHRISTY A G,et al.UHP Metamorphic Evolution of Coesite-bearing Eclogite from the Yuka Terrane,North Qaidam UHPM Belt,NW China[J].European Journal of Mineralogy,2009,21(6):1287-1300.
[58] 陈丹玲,孙 勇,刘 良.柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J].地学前缘,2007,14(1):108-116.
CHEN Dan-ling,SUN Yong,LIU Liang.The Metamorphic Ages of the Country Rock of the Yukahe Eclogites in the North Qaidam and Its Geological Significance[J].Earth Science Frontiers,2007,14(1):108-116.
[59] 陈 鑫,郑有业,许荣科,等.柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J].岩石学报,2018,34(6):1685-1703.
CHEN Xin,ZHENG You-ye,XU Rong-ke,et al.Mine-ralogical,Trace Element Composition of Rutile and Genesis of Eclogite-type Rutile Deposit from the Yuka Terrane,North Qaidam UHPM Belt[J].Acta Petrologica Sinica,2018,34(6):1685-1703.
[60] 陈 鑫,郑有业,许荣科,等.柴北缘超高压变质带折返过程对金红石成矿的制约:来自鱼卡和铁石观西地区石榴石成分环带的证据[J].地球科学与环境学报,2016,38(2):143-159.
CHEN Xin,ZHENG You-ye,XU Rong-ke,et al.Exhumation Processes of UHP Metamorphic Belt in the Nor-thern Qaidam and Their Constraints to Rutile Minera-lization:Evidences from Compositional Zoning of Garnets in Yuqia and West Tieshiguan Areas[J].Journal of Earth Sciences and Environment,2016,38(2):143-159.
[61] 柳小明,高 山,袁洪林,等.193 nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J].岩石学报,2002,18(3):408-418.
LIU Xiao-ming,GAO Shan,YUAN Hong-lin,et al.Analysis of 42 Major and Trace Elements in Glass Standard Reference Materials by 193 nm LA-ICP-MS[J].Acta Petrologica Sinica,2002,18(3):408-418.
[62] GREEN T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-mantle System[J].Chemical Geology,1995,120(3/4):347-359.
[63] ZHANG L J,ZHANG L F,LU Z.Nb-Ta Mobility and Fractionation During Exhumation of UHP Eclogite from Southwestern Tianshan,China[J].Journal of Asian Earth Sciences,2016,122:136-157.
[64] CHEN X,ZHENG Y Y,XU R K,et al.Subduction Channel Fluid-rock Interaction:Indications from Rutile-quartz Veins Within Eclogite from the Yuka Terrane,North Qaidam Orogen[J].Geoscience Frontiers,2019,DOI:10.1016/j.gsf.2019.07.009.
[65] 徐 珏,陈振宇,陈毓川,等.大陆科学钻探工程CCSD主孔中发现的大量流体交代脉体[J].地球科学,2006,31(4):551-556.
XU Jue,CHEN Zhen-yu,CHEN Yu-chuan,et al.Large Numbers of Fluid Metasomatic Veins in CCSD Main Hole[J].Earth Science,2006,31(4):551-556.
[66] TANG J,ENDO S.X-ray Study of the Transitions Among the Rutile,α-PbO2 and Baddeleyite Phases of TiO2 at High Pressure and High Temperature[J].AIP Conference Proceedings,1994,309:367-370.
[67] HWANG S L,SHEN P,CHU H T,et al.Nanometer-size α-PbO2-Type TiO2 in Garnet:A Thermobarometer for Ultrahigh-pressure Metamorphism[J].Science,2000,288:321-324.
[68] DUBROVINSKAIA N A,DUBROVINSKY L S,AHUJA R,et al.Experimental and Theoretical Identification of a New High-pressure TiO2 Polymorph[J].Physical Review Letters,2001,DOI:10.1103/PhysRevLett.87.275501.
[69] 刘 良,陈丹玲,章军锋,等.陆壳超深俯冲到斯石英稳定域地幔深度(~300 km)的新证据[J].地球科学,2019,44(12):3998-4003.
LIU Liang,CHEN Dan-ling,ZHANG Jun-feng,et al.New Evidence of an Ultra-deep Continental Subduction to Mantle Depth(~300 km)in Stishovite Stability Field[J].Earth Science,2019,44(12):3998-4003.

Memo

Memo:
-
Last Update: 2020-03-24