|Table of Contents|

Electrical Conductivity Beneath Lanzhou Area of Gansu, China Inverted from Geomagnetic Depth Sounding by Using Improved Simulating Annealing Algorithm(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2021年第02期
Page:
332-342
Research Field:
应用地球物理
Publishing date:

Info

Title:
Electrical Conductivity Beneath Lanzhou Area of Gansu, China Inverted from Geomagnetic Depth Sounding by Using Improved Simulating Annealing Algorithm
Author(s):
WENG Ai-hua GUO Jun-hao
(College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, Jilin, China)
Keywords:
geomagnetic depth sounding electrical conductivity simulated annealing algorithm statistical analysis mantle transition zone inversion noise Lanzhou
PACS:
P318.2+1
DOI:
10.19814/j.jese.2020.08047
Abstract:
Geomagnetic depth sounding one-dimensional inversion can obtain the deep earth electrical conductivity structure beneath a geomagnetic station. The improved simulated annealing algorithm was applied to the inversion of geomagnetic depth sounding data, and the expected value based on the statistical analysis of all high-quality solutions in the inversion was used as the optimal solution of the model. The one-dimensional inversion results of synthetic geomagnetic depth sounding data show that for the noise-free theoretical data, the traditional simulated annealing algorithm can restore the true electrical conductivity profile; when there is noise, compared with the traditional simulated annealing algorithm, the improved simulated annealing algorithm can effectively overcome the influence of noise, and when the noise is below an acceptable level, the reliable estimation results of non-unique model parameters can be obtained. The inversion results of actual data from Lanzhou station show that in the sensitive depth range of geomagnetic depth sounding, the electrical conductivity profile is consistent with the previous ones; but in the lower mantle transition zone, the electrical conductivity is obtained by the inversion is relatively low. Based on the results of petrophysical experiments, it can be speculated that the lower layer of mantle transition zone beneath Lanzhou area may be dry and cold, and the deep mantle plume in the surrounding area may not affect the deep thermal state of Lanzhou area.

References:

[1] 徐义刚,何 斌,罗震宇,等.我国大火成岩省和地幔柱研究进展与展望[J].矿物岩石地球化学通报,2013,32(1):25-39.
XU Yi-gang,HE Bin,LUO Zhen-yu,et al.Study on Mantle Plume and Large Igneous Provinces in China:An Overview and Perspectives[J].Bulletin of Minera-logy,Petrology and Geochemistry,2013,32(1):25-39.
[2] 许志琴,李思田,张建新,等.塔里木地块与古亚洲/特提斯构造体系的对接[J].岩石学报,2011,27(1):1-22.
XU Zhi-qin,LI Si-tian,ZHANG Jian-xin,et al.Paleo-Asian and Tethyan Tectonic Systems with Docking the Tarim Block[J].Acta Petrologica Sinica,2011,27(1):1-22.
[3] 王 婕,姚长利,李泽林.磁异常揭示的峨眉山大火成岩省的深部结构[J].地球物理学报,2019,62(4):1394-1404.
WANG Jie,YAO Chang-li,LI Ze-lin.Deep Structure in the Emeishan Large Igneous Province Revealed by Inversion of Magnetic Anomalies[J].Chinese Journal of Geophysics,2019,62(4):1394-1404.
[4] LEKIC V,COTTAAR S,DZIEWONSKI A,et al.Cluster Analysis of Global Lower Mantle Tomography:A New Class of Structure and Implications for Chemical Heterogeneity[J].Earth and Planetary Science Letters,2012,357/358:68-77.
[5] FLAMENT N,WILLIAMS S E,MULLER R D,et al.Origin and Evolution of the Deep Thermochemical Structure Beneath Eurasia[J].Nature Communications,2017,8:14164.
[6] PÜTHE C,KUVSHINOV A,KHAN A,et al.A New Model of Earth's Radial Conductivity Structure Derived from Over 10 yr of Satellite and Observatory Magnetic Data[J].Geophysical Journal International,2015,203(3):1864-1872.
[7] OLSEN N.The Electrical Conductivity of the Mantle Beneath Europe Derived from C-responses from 3 to 720 hr[J].Geophysical Journal International,1998,133(2):298-308.
[8] KUVSHINOV A,OLSEN N.A Global Model of Mantle Conductivity Derived from 5 Years of CHAMP,Orsted,and SAC-C Magnetic Data[J].Geophysical Research Letters,2006,33(18):L18301.
[9] RIBAUDO J T.Flexible Finite-element Modeling of Global Geomagnetic Depth Sounding[D].San Diego:University of California,2011.
[10] ARMADILLO E,BOZZO E,CERV V,et al.Geomagnetic Depth Sounding in the Northern Apennines(Italy)[J].Earth,Planets and Space,2001,53(5):385-396.
[11] SUN J,EGBERT G D.A Thin-sheet Model for Global Electromagnetic Induction[J].Geophysical Journal International,2012,189(1):343-356.
[12] 徐光晶,汤 吉,黄清华,等.华北地区上地幔及过渡带电性结构研究[J].地球物理学报,2015,58(2):566-575.
XU Guang-jing,TANG Ji,HUANG Qing-hua,et al.Study on the Conductivity Structure of the Upper Mantle and Transition Zone Bencath North China[J].Chinese Journal of Geophysics,2015,58(2):566-575.
[13] KELBERT A,EGBERT G D,SCHULTZ A.Non-linear Conjugate Gradient Inversion for Global EM Induction:Resolution Studies[J].Geophysical Journal International,2008,173(2):365-381.
[14] KELBERT A,SCHULTZ A,EGBERT G D.Global Electromagnetic Induction Constraints on Transition-zone Water Content Variations[J].Nature,2009,460:1003-1006.
[15] KUVSHINOV A,SEMENOV A.Global 3-D Imaging of Mantle Electrical Conductivity Based on Inversion of Observatory C-responses:I.An Approach and Its Verification[J].Geophysical Journal International,2012,189(3):1335-1352.
[16] SEMENOV A,KUVSHINOV A.Global 3-D Imaging of Mantle Conductivity Based on Inversion of Obser-vatory C-responses:II.Data Analysis and Results[J].Geophysical Journal International,2012,191(3):965-992.
[17] MUNCH F D,GRAYVER A V,KUVSHINOV A,et al.Stochastic Inversion of Geomagnetic Observatory Data Including Rigorous Treatment of the Ocean Induction Effect with Implications for Transition Zone Water Content and Thermal Structure[J].Journal of Geophysical Research:Solid Earth,2018,123(1):31-51.
[18] 张艳辉,翁爱华,李世文,等.基于全局光滑约束的地磁测深C-响应估计[J].地球物理学报,2019,62(5):1898-1907.
ZHANG Yan-hui,WENG Ai-hua,LI Shi-wen,et al.Estimation of C-responses of Geomagnetic Depth Sounding Based on Global Smooth Constraint[J].Chinese Journal of Geophysics,2019,62(5):1898-1907.
[19] VELÍMSKY J,MARTINEC Z,EVERETT M E.Electrical Conductivity in the Earth's Mantle Inferred from CHAMP Satellite Measurements:I.Data Processing and 1-D Inversion[J].Geophysical Journal International,2006,166(2):529-542.
[20] OLSEN N,LÜHR H,FINLAY C C,et al.The CHAOS-4 Geomagnetic Field Model[J].Geophysical Journal International,2014,197(2):815-827.
[21] PÜTHE C,KUVSHINOV A.Mapping 3-D Mantle Electrical Conductivity from Space:A New 3-D Inversion Scheme Based on Analysis of Matrix Q-responses[J].Geophysical Journal International,2014,197(2):768-784.
[22] ROTHMAN D H.Nonlinear Inversion,Statistical Mechanics,and Residual Statics Estimation[J].Geophy-sics,1985,50(12):2784-2796.
[23] ROTHMAN D H.Automatic Estimation of Large Residual Statics Corrections[J].Geophysics,1986,51(2):332-346.
[24] SEN M K,BHATTACHARYA B B,STOFFA P L.Nonlinear Inversion of Resistivity Sounding Data[J].Geophysics,1993,58(4):496-507.
[25] SHARMA S P,KAIKKONEN P.Appraisal of Equi-valence and Suppression Problems in 1D EM and DC Measurements Using Global Optimization and Joint Inversion[J].Geophysical Prospecting,1999,47(2):219-249.
[26] SHARMA S P,KAIKKONEN P.Two-dimensional Non-linear Inversion of VLF-R Data Using Simulated Annealing[J].Geophysical Journal International,1998,133(3):649-668.
[27] VEDANTI N,SRIVASTAVA R P,SAGODE J,et al.An Efficient 1D Occam's Inversion Algorithm Using Analytically Computed First- and Second-order Deri-vatives for DC Resistivity Soundings[J].Computers and Geosciences,2005,31(3):319-328.
[28] INGBER L.Very Fast Simulated Re-annealing[J].Mathematical and Computer Modelling,1989,12(8):967-973.
[29] GELFAND S B,MITTER S K.Simulated Annealing Type Algorithms for Multivariate Optimization[J].Algorithmica,1991,6:419-436.
[30] 师学明,王家映.一维层状介质大地电磁模拟退火反演法[J].地球科学,1998,23(5):542-546.
SHI Xue-ming,WANG Jia-ying.One Dimensional Magnetotelluric Sounding Inversion Using Simulated Annealing[J].Earth Science,1998,23(5):542-546.
[31] SHARMA S P.VFSARES:A Very Fast Simulated Annealing FORTRAN Program for Interpretation of 1-D DC Resistivity Sounding Data from Various Electrode Arrays[J].Computers and Geosciences,2012,42:177-188.
[32] BANKS R J.Geomagnetic Variations and the Electrical Conductivity of the Upper Mantle[J].Geophysical Journal International,1969,17(5):457-487.
[33] TARITS P.Electromagnetic Studies of Global Geodynamic Processes[J].Surveys in Geophysics,1994,15(2):209-238.
[34] 李世文,翁爱华,张艳辉,等.全球地磁感应测深数据三维反演[J].地球物理学报,2019,62(5):1908-1920.
LI Shi-wen,WENG Ai-hua,ZHANG Yan-hui,et al.3-D Inversion for Global Geomagnetic Depth Sounding[J].Chinese Journal of Geophysics,2019,62(5):1908-1920.
[35] 李世文,翁爱华,李建平,等.浅部约束的地磁测深C-响应一维反演[J].地球物理学报,2017,60(3):1201-1210.
LI Shi-wen,WENG Ai-hua,LI Jian-ping,et al.1-D Inversion of C-response Data from Geomagnetic Depth Sounding with Shallow Resistivity Constraint[J].Chinese Journal of Geophysics,2017,60(3):1201-1210.
[36] SRIVASTAVA S P.Theory of the Magnetotelluric Method for a Spherical Conductor[J].Geophysical Journal International,1966,11(4):373-387.
[37] 李丽丽,马国庆.基于重力梯度的模拟退火法反演中国南海海底地形[J].地球物理学进展,2014,29(2):931-935.
LI Li-li,MA Guo-qing.The Inversion of Seabed Terrain of the South China Sea by Simulated Annealing Based on Gravity Gradient Data[J].Progress in Geophysics,2014,29(2):931-935.
[38] YOSHINO T,KATSURA T.Electrical Conductivity of Mantle Minerals:Role of Water in Conductivity Anomalies[J].Annual Review of Earth and Planetary Sciences,2013,41:605-628.
[39] 马 锋,刘 立,闫 华.统计分析在松辽盆地西部地层母岩类型研究中的应用[J].世界地质,2003,22(4):331-338.
MA Feng,LIU Li,YAN Hua.Application of the Statistical Analysis in Researching the Type of Motherrock in the West Strata of Songliao Basin[J].Global Geology,2003,22(4):331-338.
[40] 李建平,翁爱华,李世文,等.海洋效应对中国沿海地磁观测影响:以广州台站为例[J].地球物理学报,2018,61(2):649-658.
LI Jian-ping,WENG Ai-hua,LI Shi-wen,et al.The Influence of Ocean Effect on Geomagnetic Observations in Coastal Areas of China:A Case Study of the Guangzhou Observatory[J].Chinese Journal of Geophysics,2018,61(2):649-658.
[41] CHAVE A D,THOMSON D J.Bounded Influence Magnetotelluric Response Function Estimation[J].Geophysical Journal International,2004,157(3):988-1006.
[42] YOSHINO T,MANTHILAKE G,MATSUZAKI T,et al.Dry Mantle Transition Zone Inferred from the Conductivity of Wadsleyite and Ringwoodite[J].Nature,2008,451:326-329.
[43] 李世文.全球地幔转换带三维电性结构研究[D].长春:吉林大学,2019.
LI Shi-wen.Global 3D Imaging of Electrical Structure in Mantle Transition Zone[D].Changchun:Jilin University,2019.

Memo

Memo:
-
Last Update: 2021-04-15