|Table of Contents|

Discovery of High-Mg Diorites in Nabire Area, Indonesia and Its Implications(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第03期
Page:
499-512
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Discovery of High-Mg Diorites in Nabire Area, Indonesia and Its Implications
Author(s):
ZHANG Bo12 XU Ying-hao2 WANG Guo-dong34 CUI Xiao-liang5 LI Zeng-sheng67 SU Shang-guo2* CHEN Xue-gen2
(1. Development and Research Center, China Geological Survey, Beijing 100037, China; 2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 3. School of Resources and Environment, Linyi University, Linyi 276005, Shandong, China; 4. Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, Linyi University, Linyi 276005, Shandong, China; 5. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, Hebei, China; 6. Shandong Provincial Key Laboratory of Metallogenic Geological Processes and Resource Utilization, Shandong Institute of Geological Sciences, Jinan 250013, Shandong, China; 7. Key Laboratory of Gold Mineralization Processes and Resource Utilization of Ministry of Natural Resources, Jinan 250013, Shandong, China)
Keywords:
high-Mg diorite geochemistry petrogenesis Cu-Au deposit tectonic setting plate subduction Central Orogenic Belt of New Guinea
PACS:
P57; P59; P581
DOI:
10.19814/j.jese.2022.04042
Abstract:
The Central Orogenic Belt of New Guinea is the youngest orogenic belt, and is also the most important porphyry-type Cu-Au metallogenic belt around the world. A set of high-Mg diorites have been found in Nabire area, Indonesia, which is located in the central-northwestern part of Central Orogenic Belt of New Guinea. They provide favorable records for the detailed study of the magmatic process and metallogenic environment related to ocean subduction. As revealed by field observations and the study of petrological and geochemical characteristics, these diorites mainly include fine-grained amphiboles and plagioclases, with no visible olivine xenoliths or xenocrysts. These rocks have high contents of MgO(4.51%-10.88%), Yb((1.16-2.69)×10-6), and Y((11.68-25.09)×10-6), and high Mg#(50.07-72.50). Moreover, they are enriched in LILEs and depleted in HFSEs, and have low Sr/Y and La/Yb ratios. Combined with relatively consistent Nb/La, U/Nb, Th/La, and U/Th ratios, the high-Mg diorites may have evolved from the interactions between subduction sediment melt and overlying mantle peridotite, as well as fractional crystallization. This evolution was accompanied by the release of large amounts of H2O and fluids, leading to the increase of oxygen fugacity. Relevant studies show that high-Mg andesites/diorites have a similar formation environment to that of porphyry-type Cu-Au deposits and a close affinity with porphyry-type Cu-Au deposits, and thus serve as a prospecting indicator of large porphyry deposits. The Cu-Au mineralization has occurred in high-Mg diorites of Nabire area, indicating that this area has the potential for the prospecting of large Cu-Au deposits.

References:

[1] KELEMEN P B.Genesis of High Mg# Andesites and the Continental Crust[J].Contributions to Mineralogy and Petrology,1995,120:1-19.
[2] TATSUMI Y,ISHIKAWA N,ANNO K,et al.Tectonic Setting of High-Mg Andesite Magmatism in the SW Japan Arc:K-Ar Chronology of the Setouchi Volcanic Belt[J].Geophysical Journal International,2001,144(3):625-631.
[3] TATSUMI Y,SHUKUNO H,SATO K,et al.The Petrology and Geochemistry of High-magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt,SW Japan[J].Journal of Petrology,2003,44(9):1561-1578.
[4] WANG C,SUN F,LIU D,et al.Discovery of the Early Paleozoic Akechukesai High-Mg Diorites in the Western Segment of East Kunlun Orogenic Belt and Its Constraints on the Mechanism of Break-off from Proto-Tethys Oceanic Subducted Slab[J].Geosciences Journal,2022,26:1-16.
[5] HANYU T,TATSUMI Y,NAKAI A.A Contribution of Slab Melts to the Formation of High-Mg Andesite Magmas:Hf Isotopic Evidence from SW Japan[J].Geophysical Research Letters,2002,29(22):81-84.
[6] KELEMEN P B,HANGHØJ K,GREENE A R.One View of the Geochemistry of Subduction-related Magmatic Arcs,with an Emphasis on Primitive Andesite and Lower Crust[J].Treatise on Geochemistry:Second Edition,2014,4:749-806.
[7] TATSUMI Y,HANYU T.Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volca-nic Belt,SW Japan[J].Geochemistry,Geophysics,Geosystems,2003,4(9):000530.
[8] MANYA S,MABOKO M A H,NAKAMURA E.The Geochemistry of High-Mg Andesites and Associated Adakitic Rocks in the Musoma-Mara Greenstone Belt,Northern Tanzania:Possible Evidence for Neoarchean Ridge Subduction?[J].Precambrian Resear-ch,2007,159(3):241-259.
[9] MUKASA S B,BLATTER D L,ANDRONIKOV A V.Mantle Peridotite Xenoliths in Andesite Lava at El Penon,Central Mexican Volcanic Belt:Isotopic and Trace Element Evidence for Melting and Metasomatism in the Mantle Wedge Beneath an Active Arc[J].Earth and Planetary Science Letters,2007,260(1/2):37-55.
[10] XU J F,SHINJO R,DEFANT M J,et al.Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China:Partial Melting of Delaminated Lower Continental Crust?[J].Geology,2002,30(12):1111-1114.
[11] GAO S,RUDNICK R,YUAN H L,et al.Recycling Lower Continental Crust in the North China Craton[J].Nature,2004,432:892-897.
[12] 张 旗,钱 青,翟明国,等.Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J].岩石矿物学杂志,2005,24(2):117-125.
ZHANG Qi,QIAN Qing,ZHAI Ming-guo,et al.Geochemistry,Petrogenesis and Geodynamic Implications of Sanukite[J].Acta Petrologica et Mineralogica,2005,24(2):117-125.
[13] LI J X,QIN K Z,LI G M,et al.Petrogenesis of Ore-bearing Porphyries from the Duolong Porphyry Cu-Au Deposit,Central Tibet:Evidence from U-Pb Geochronology,Petrochemistry and Sr-Nd-Hf-O Isotope Characteristics[J].Lithos,2013,160/161:216-227.
[14] TIEPOLO M,TRIBUZIO R,LANGONE A.High-Mg Andesite Petrogenesis by Amphibole Crystallization and Ultramafic Crust Assimilation:Evidence from Adamello Hornblendites(Central Alps,Italy)[J].Journal of Petrology,2011,52(5):1011-1045.
[15] 张 旗,王 焰,钱 青,等.晚太古代Sanukite(赞岐岩)与地球早期演化[J].岩石学报,2004,20(6):1355-1362.
ZHANG Qi,WANG Yan,QIAN Qing,et al.Sanukite of Late Archaean and Early Earth Evolution[J].Acta Petrologica Sinica,2004,20(6):1355-1362.
[16] 芮宗瑶,张洪涛,陈仁义,等.斑岩铜矿研究中若干问题探讨[J].矿床地质,2006,25(4):491-500.
RUI Zong-yao,ZHANG Hong-tao,CHEN Ren-yi,et al.An Approach to Some Problems of Porphyry Copper Deposits[J].Mineral Deposits,2006,25(4):491-500.
[17] 毛景文,罗茂澄,谢桂青,等.斑岩铜矿床的基本特征和研究勘查新进展[J].地质学报,2014,88(12):2153-2175.
MAO Jing-wen,LUO Mao-cheng,XIE Gui-qing,et al.Basic Characteristics and New Advances in Research and Exploration on Porphyry Copper Deposits[J].Acta Geologica Sinica,2014,88(12):2153-2175.
[18] YANG Z M,LU Y J,HOU Z Q,et al.High-Mg Diorite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens[J].Journal of Petrology,2015,56(2):227-254.
[19] 侯增谦,杨志明,王 瑞,等.再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J].地学前缘,2020,27(2):20-44.
HOU Zeng-qian,YANG Zhi-ming,WANG Rui,et al.Further Discussion on Porphyry Cu-Mo-Au Deposit Formation in Chinese Mainland[J].Earth Science Frontiers,2020,27(2):20-44.
[20] YOGODZINSKI G M,KAY R W,VOLYNETS O N,et al.Magnesian Andesite in the Western Aleutian Komandorsky Region:Implications for Slab Melting and Processes in the Mantle Wedge[J].Geological Society of America Bulletin,1995,107(5):505-519.
[21] 王 强,赵振华,许继峰,等.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报,2006,22(1):11-30.
WANG Qiang,ZHAO Zhen-hua,XU Ji-feng,et al.Car-boniferous Adakite-high-Mg Andesite-Nb Enriched Basaltic Rock Suites in the Northern Tianshan Area:Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt and Cu-Au Mineralization[J].Acta Petrologica Sinica,2006,22(1):11-30.
[22] WANG Q,WYMAN D A,XU J F,et al.Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China:Implications for Cu-Au Mi-neralization[J].Journal of Geology,2007,115(2):149-161.
[23] 唐功建,王 强.高镁安山岩及其地球动力学意义[J].岩石学报,2010,26(8):2495-2512.
TANG Gong-jian,WANG Qiang.High-Mg Andesites and Their Geodynamic Implications[J].Acta Petrologica Sinica,2010,26(8):2495-2512.
[24] HILL K C,KENDRICK R D,CROWHURST P V,et al.Copper-gold Mineralisation in New Guinea:Tectonics,Lineaments,Thermochronology and Structure[J].Journal of the Geological Society of Australia,2002,49(4):737-752.
[25] HILLIS R R,MÜLLER R D.Evolution and Dynamics of the Australian Plate[R].New York:Geological Society of America,2003.
[26] CLOOS M,SAPIIE B,UFFORD A Q V,et al.Collisional Delamination in New Guinea:The Geotectonics of Subducting Slab Breakoff[R].New York:Geologi-cal Society of America,2005.
[27] ELI A S,LON D A,KIMBERLY S K S,et al.Collision Propagation in Papua New Guinea and the Solomon Sea[J].Tectonics,1991,10(5):863-874.
[28] SUZANNE L B,PAUL G F,LAURA E W.Tectonics of the New Guinea Region[J].Annual Review of Ear-th and Planetary Sciences,2012,40(1):495-520.
[29] HOLM R J,TAPSTER S,JELSMA H A,et al.Tectonic Evolution and Copper-gold Metallogenesis of the Papua New Guinea and Solomon Islands Region[J].Ore Geology Reviews,2018,104:208-226.
[30] RUMBIAK U,LAI C K,FURQAN R A,et al.Geology,Alteration Geochemistry,and Exploration Geochemical Mapping of the Ertsberg Cu-Au-Mo District in Papua,Indonesia[J].Journal of Geochemical Exploration,2022,232:106889.
[31] FURUKAWA Y,TATSUMI Y.Melting of a Subducting Slab and Production of High-Mg Andesite Magmas:Unusual Magmatism in SW Japan at 13-15 Ma[J].Geophysical Research Letters,1999,26(15):2271-2274.
[32] TSUCHIYA N,SUZUKI S,KIMURA J I.Evidence for Slab Melt/Mantle Reaction:Petrogenesis of Early Cretaceous and Eocene High-Mg and Esites from the Kitakami Mountains,Japan[J].Lithos,2005,79(1/2):179-206.
[33] KAY R W.Aleutian Magnesian Andesites:Melts from Subducted Pacific Ocean Crust[J].Journal of Volca-nology and Geothermal Research,1978,4(1/2):117-132.
[34] CROWHURST P V,HILL K C,FOSTER D A,et al.Thermochronological and Geochemical Constraints on the Tectonic Evolution of Northern Papua New Gui-nea[J].Analytical and Bioanalytical Chemistry,1996,106(1):525-537.
[35] SHIMODA G,TATSUMI Y,NOHDA S,et al.Setouchi High-Mg Andesites Revisited:Geochemical Evidence for Melting of Subducting Sediments[J].Earth and Planetary Science Letters,1998,160(3/4):479-492.
[36] KAMEI A,OWADA M,NAGAO T,et al.High-Mg Diorites Derived from Sanukitic HMA Magmas,Kyushu Island,Southwest Japan Arc:Evidence from Clinopyroxene and Whole Rock Compositions[J].Li-thos,2004,75(3/4):359-371.
[37] UFFORD A Q V,CLOOS M.Cenozoic Tectonics of New Guinea[J].AAPG Bulletin,2005,89(1):119-140.
[38] DAVIES H L.The Geology of New Guinea:The Cordilleran Margin of the Australian Continent[J].Episodes,2012,35(1):87-102.
[39] LUKE M.The Structure and Evolution of the Northern Australian Margin:Insights from the Papuan Fold and Thrust Belt,Papua New Guinea[D].Melbourne:University of Melbourne,2021.
[40] HILL K C,GLEADOW A J W.Uplift and Thermal History of the Papuan Fold Belt,Papua New Guinea:Apatite Fission Track Analysis[J].Australian Journal of Earth Sciences,1989,36(4):515-539.
[41] CARMAN G J Z.Petroleum Exploration in Papua New Guinea:Proceedings of the First PNG Petroleum Convention[R].Port Moresby:Papua New Guinea Chamber of Mines and Petroleum,1990.
[42] LEYS C A,CLOOS M,NEW B T E,et al.Chapter 10 Copper-gold±Molybdenum Deposits of the Ertsberg-Grasberg District,Papua,Indonesia[C]∥HEDENQUIST J W,HARRIS M,CAMUS F.Geology and Genesis of Major Copper Deposits and Districts of the World:A Tribute to Richard H. SILLITOE.Littleton:Society of Economic Geologists,2012:SP.16.10.
[43] SAPIIE B,CLOOS M.Strike-slip Faulting and Veining in the Grasberg Giant Porphyry Cu-Au Deposit,Ertsberg(Gunung Bijih)Mining District,Papua,Indonesia[J].International Geology Review,2013,55(1):1-42.
[44] JABLONSKI D,BALLESTEROS M.New Regional Data and Advances in Understanding of the Stratigraphy,Tectonics,Structure and Prospectivity of the Gulf of Papua(Papua New Guinea)[J].ASEG Extended Abstracts,2018(1):abT7_4A.
[45] HAMILTON W B.Tectonics of the Indonesian Region[R].Reston:USGS,1972.
[46] GB/T 14506.X—2010,硅酸盐岩石化学分析方法[S].
GB/T 14506.X—2010,Methods for Chemical Analysis of Silicate Rocks[S].
[47] WINCHESTER J A,FLOYD P A.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J].Chemical Geology,1977,20:325-343.
[48] MIYASHIRO A.Volcanic Rock Series in Island Arc and Active Continental Margins[J].American Journal of Science,1974,274(4):321-355.
[49] HIROSE K.Melting Experiments on Lherzolite KLB-1 Under Hydrous Conditions and Generation of High-magnesian Andesites Melts[J].Geology,1997,25(1):42-44.
[50] FALLOON T J,DANYUSHEVSKY L V.Melting of Refractory Mantle at 1.5,2 and 2.5 GPa Under Anhydrous and H2O-undersaturated Conditions:Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting[J].Journal of Petrology,2000,41(2):257-283.
[51] TALOY R N,NESBITT R W,VIDAL P,et al.Mi-neralogy,Chemistry and Genesis of the Boninite Series Volcanics,Chichijima,Bonin Island,Japan[J].Journal of Petrology,1994,35(3):577-617.
[52] TATSUMI Y.Origin of High-magnesian Andesites in the Setouchi Volcanic Belt,Southwest Japan:Ⅱ.Mel-ting Phase Relations at High Pressures[J].Earth and Planetary Science Letters,1982,60(2):305-317.
[53] 邓晋福,刘 翠,冯艳芳,等.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质,2010,37(4):1112-1118.
DENG Jin-fu,LIU Cui,FENG Yan-fang,et al.High Magnesian Andesitic/Dioritic Rocks(HMA)and Ma-gnesian Andesitic/Dioritic Rocks(MA):Two Igneous Rock Types Related to Oceanic Subduction[J].Geology in China,2010,37(4):1112-1118.
[54] 秦 利,裴先治,李佐臣,等.扬子板块西北缘碧口微地块新元古代大陆弧岩浆作用:来自锆石U-Pb年代学、Hf同位素和地球化学证据[J].地球科学与环境学报,2021,43(4):686-709.
QIN Li,PEI Xian-zhi,LI Zuo-chen,et al.Neoproterozoic Continental Arc Magmatism in Bikou Micro-blo-ck,the Northwestern Margin of Yangtze Plate,China:Evidence from Zircon U-Pb Dating,Hf Isotope and Geochemistry[J].Journal of Earth Sciences and Environment,2021,43(4):686-709.
[55] HALL A.Igneous Petrogenesis:A Global Tectonic Approach[J].Mineralogical Magazine,1989,53:514-515.
[56] ZHANG X R,ZHAO G C,PAUL R E,et al.Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-collisional Extension in the Eastern Tianshan,NW China:Insights from Geochronology and Geochemistry of Mafic-intermediate Intrusions[J].Lithos,2016,256/257:269-281.
[57] LI H,WANG M,ZENG X W,et al.Generation of Jurassic High-Mg Diorite and Plagiogranite Intrusions of the Asa Area,Tibet:Products of Intra-oceanic Subduction of the Meso-Tethys Ocean[J].Lithos,2020,362/363:105481.
[58] HENDERSON P.Inorganic Geochemistry[M].New York:Pergamon Press,1982.
[59] THIÉBLEMONT D,STEIN G,LESCUYER J L.Epi-thermal and Porphyry Deposits:The Adakite Connection[J].Comptes Rendus de I'Académie des Sciences,Paris,1997,325(2):103-109.
[60] 胡 乐,李以科,宋 扬,等.安徽铜陵角闪石堆积岩锆石U-Pb年代学、矿物化学及其对深部岩浆作用的启示[J].地质学报,2018,92(4):704-721.
HU Le,LI Yi-ke,SONG Yang,et al.Zircon U-Pb Dating and Mineral Chemistry of the Amphibole Cumulates in Tongling,Anhui Province,and Its Implications for Deep Magmatism[J].Acta Geologica Sinica,2018,92(4):704-721.
[61] 张 波,张晓旭,苏尚国,等.河北武安洪山正长岩杂岩体成因与地表快速隆升-剥蚀特征[J].地球科学,2020,45(7):2571-2584.
ZHANG Bo,ZHANG Xiao-xu,SU Shang-guo,et al.Genesis and Rapid Uplift-erosion Characteristic of Hongshan Syenite Complex in Wu'an,Hebei,China[J].Earth Science,2020,45(7):2571-2584.
[62] YE X T,ZHANG C L,WANG A G,et al.Early Paleo-zoic Slab Rollback in the North Altun,Northwest China:New Evidence from Mafic Intrusions and High-Mg Andesites[J].Lithosphere,2018,10(6):687-707.
[63] LIU B,CHEN J F,HAN B F,et al.Geochronological and Geochemical Evidence for a Late Ordovician to Silurian Arc-back-arc System in the Northern Great Xing'an Range,NE China[J].Geoscience Frontiers,2021,12(1):131-145.
[64] HOFMANN A W,JOCHUM K P,SEUFERT M,et al.Nb and Pb in Oceanic Basalts:New Constraints on Mantle Evolution[J].Earth and Planetary Sciences Letters,1986,79(1/2):33-45.
[65] WOOD B J,TURNER S P.Origin of Primitive High-Mg Andesite:Constraints from Natural Examples and Experiments[J].Earth and Planetary Science Letters,2009,283(1/2/3/4):59-66.
[66] SMITHIES R H,CHAMPION D C.Late Archaean Felsic Alkaline Igneous Rocks in the Eastern Goldfields,Yilgarn Craton,Western Australia:A Result of Lower Crustal Delamination?[J].Journal of the Geo-logical Society,1999,156(3):561-576.
[67] SMITHIES R H.The Archaean High-Mg Diorite Sui-te:Links to Tonalite-trondhjemite-granodiorite Mag-matism and Implications for Early Archaean Crustal Growth[J].Journal of Petrology,2000,41(12):1653-1671.
[68] KAWABATA H,SHUTO K.Magma Mixing Recorded in Intermediate Rocks Associated with High-Mg Andesites from the Setouchi Volcanic Belt,Japan:Implications for Archean TTG Formation[J].Journal of Volcanology and Geothermal Research,2005,140(4):241-271.
[69] 郑永飞,陈仁旭,徐 峥,等.俯冲带中的水迁移[J].中国科学:地球科学,2016,46(3):253-286.
ZHENG Yong-fei,CHEN Ren-xu,XU Zheng,et al.The Transport of Water in Subduction Zones[J].Science China:Earth Sciences,2016,46(3):253-286.
[70] FALLOON T J,GREEN D H,O'NEILL H S C,et al.Experimental Tests of Low Degree Peridotite Partial Melt Compositions:Implications for the Nature of Anhydrous Near-solidus Peridotite Melts at 1 GPa[J].Earth and Planetary Science Letters,1997,152(1/2/3/4):149-162.
[71] SUN S S,MCDONOUGH W F.Chemical and Isoto-pic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313-345.
[72] WAGNER T P,DONNELLY-NOLAN J M,GROVE T L.Evidence of Hydrous Differentiation and Crystal Accumulation in the Low-MgO,High-Al2O3 Lake Basalt from Medicine Lake Volcano,California[J].Contributions to Mineralogy and Petrology,1995,121:201.
[73] QIAN Q,JOERG H.Formation of High-Mg Diorites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths[J].Journal of Petrology,2010,51(7):1381-1416.
[74] 程小鑫,吴鸿翔,孙大亥,等.塔里木盆地西北缘二叠纪基性岩浆侵入事件及其构造意义[J].岩石学报,2022,38(3):743-772.
CHENG Xiao-xin,WU Hong-xiang,SUN Da-hai,et al.The Permian Mafic Intrusive Events in the Northwestern Margin of the Tarim Basin and Their Tecto-nic Significance[J].Acta Petrologica Sinica,2022,38(3):743-772.
[75] PLANK T,LANGMUIR C H.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle[J].Chemical Geology,1998,145(3/4):325-394.
[76] SHIREY S B,HANSON G N.Mantle Derived Archaean Monozodiorites and Trachyandesites[J].Nature,1984,310:222-224.
[77] WOOD D A.The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Pro-vince[J].Earth and Planetary Science Letters,1980,50(1):11-30.
[78] SUN W,DING X,HU Y H,et al.The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific[J].Earth and Planetary Science Letters,2007,262(3/4):533-542.
[79] SCHELLART W P,SPAKMAN W. Australian Plate Motion and Topography Linked to Fossil New Guinea Slab Below Lake Eyre[J].Earth and Planetary Science Letters,2015,421:107-116.
[80] WANG Q.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting,Dexing,South China:Implications for the Genesis of Porphyry Copper Mi-neralization[J].Journal of Petrology,2006,47(1):119-144.
[81] 毛景文,PIRAJNO F,张作衡,等.天山—阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系[J].地质学报,2006,80(7):925-942.
MAO Jing-wen,PIRAJNO F,ZHANG Zuo-heng,et al.Late Variscan Post-collisional Cu-Ni Sulfide Deposits in East Tianshan and Altay in China:Principal Characteristics and Possible Relationship with Mantle Plume[J].Acta Geologica Sinica,2006,80(7):925-942.
[82] COOKE D R,HOLLINGS P,WALSHE J L.Giant Porphyry Deposits:Characteristics,Distribution,and Tectonic Controls[J].Economic Geology,2005,100(5):801-818.
[83] MUNGALL J E.Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-Rich Cu Depo-sits[J].Geology,2002,30(10):915-918.
[84] YANG L Q,GAO X,SHU Q H.Multiple Mesozoic Porphyry-skarn Cu(Mo-W)Systems in Yidun Terrane,East Tethys:Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology[J].Ore Geology Reviews,2017,90:813-826.
[85] 王锦团,熊小林,陈伊翔,等.俯冲带氧逸度研究:进展和展望[J].中国科学:地球科学,2020,50(12):1785-1798.
WANG Jin-tuan,XIONG Xiao-lin,CHEN Yi-xiang,et al.Redox Processes in Subduction Zones:Progress and Prospect[J].Science China:Earth Sciences,2020,50(12):1785-1798.
[86] ZHANG Z W,SHU Q,YANG X Y,et al.Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia[J].Journal of Earth Science,2019,30(1):1-19.
[87] 魏春景,郑永飞.大洋俯冲带变质作用、流体行为与岩浆作用[J].中国科学:地球科学,2020,50(1):1-27.
WEI Chun-jing,ZHENG Yong-fei.Metamorphism,Fluid Behavior and Magmatism in Oceanic Subduction Zones[J]. Science China:Earth Sciences,2020,50(1):1-27.
[88] SAPIIE B,CLOOS M.Strike-slip Faulting in the Core of the Central Range of West New Guinea:Ertsberg Mining District,Indonesia[J].Geological Society of America Bulletin,2015,116(3/4):277-293.

Memo

Memo:
-
Last Update: 2022-06-01