|Table of Contents|

InSAR Monitoring and Inversion of 2021 Yangbi Mw 6.4 Earthquake in Yunnan, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第03期
Page:
558-567
Research Field:
大地测量、遥感与地学大数据
Publishing date:

Info

Title:
InSAR Monitoring and Inversion of 2021 Yangbi Mw 6.4 Earthquake in Yunnan, China
Author(s):
WEI Yun-jie1 WANG Ting2 YANG Cheng-sheng2* LYU Sen2
(1. China Institute of Geo-environment Monitoring, Beijing 100081, China; 2. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China)
Keywords:
geodesy earthquake earthquake source parament co-seismic deformation field InSAR fault parameter Coulomb stress Yangbi earthquake
PACS:
P315; P22
DOI:
10.19814/j.jese.2021.07009
Abstract:
On May 21, 2021, Yangbi Mw 6.4 earthquake occurred in Dali area of Yunnan, China. However, the pre-research on the geological structure in the seismogenic area of this earthquake is weak. It is scientific significance for the in-depth understanding of the seismogenic, seismogenic mechanism and characteristics of tectonic activity in Yangbi area and its adjacent areas to monitoring and inversing source parameter for this earthquake. The Sentinel-1A SAR satellite images of ESA were used to obtain the co-seismic deformation field of the earthquake from different orbits, and the Okada rectangle elastic dislocation model was used to invert the earthquake source parameters and the co-seismic slip distribution. The results show that the maximum uplift and maximum subsidence deformation caused by co-seismic rupture are both over 10 cm. The inversion results of the co-seismic show that the earthquake is caused by the rupture of a fault with a length of 12.2 km, a width of 5.0 km, a strike of 132° and a dip angle of 83°; the earthquake is a significant right-lateral strike-slip movement. The average slip is 0.19 m and the average slip angle is -153.6°, and the magnitude is Mw 6.1, which is consistent with the focal mechanism solution published by USGS and GCMT. At the same time, Coulomb stress of co-seismic is 4.21×1025 dyne·cm-1, which is equivalent to Mw 6.38; and Coulomb stress distribution reflects that the earthquake is dominated by stress release, which further triggers strike-slip earthquake unlikely.

References:

[1] MASSONNET D,ROSSI M,CARMONA C,et al.The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J].Nature,1993,364:138-142.
[2] 单新建,马 瑾,王长林,等.利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学:D辑,地球科学,2002,32(10):837-844.
SHAN Xin-jian,MA Jin,WANG Chang-lin,et al.Co-seismic Ground Deformation and Source Parameters of Mani M 7.9 Earthquake Inferred from Spaceborne D-InSAR Observation Data[J].Science in China:Series D,Earth Sciences,2002,32(10):837-844.
[3] 万永革,沈正康,王 敏,等.根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布[J].地球物理学报,2008,51(4):1074-1084.
WAN Yong-ge,SHEN Zheng-kang,WANG Min,et al.Co-seismic Slip Distribution of the 2001 Kunlun Mountain Pass West Earthquake Constrained Using GPS and InSAR Data[J].Chinese Journal of Geophysics,2008,51(4):1074-1084.
[4] 屠泓为,汪荣江,刁法启,等.运用SDM方法研究2001年昆仑山口西Ms 8.1地震破裂分布:GPS和InSAR联合反演的结果[J].地球物理学报,2016,59(6):2103-2112.
TU Hong-wei,WANG Rong-jiang,DIAO Fa-qi,et al.Slip Model of the 2001 Kunlun Mountain Ms 8.1 Earthquake by SDM:Joint Inversion from GPS and InSAR Data[J].Chinese Journal of Geophysics,2016,59(6):2103-2112.
[5] 单新建,屈春燕,宋小刚,等.汶川Ms 8.0级地震InSAR同震形变场观测与研究[J].地球物理学报,2009,52(2):496-504.
SHAN Xin-jian,QU Chun-yan,SONG Xiao-gang,et al.Co-seismic Surface Deformation Caused by the Wenchuan Ms 8.0 Earthquake from InSAR Data Analysis[J].Chinese Journal of Geophysics,2009,52(2):496-504.
[6] 季灵运,刘传金,徐 晶,等.九寨沟Ms 7.0地震的InSAR观测及发震构造分析[J].地球物理学报,2017,60(10):4069-4082.
JI Ling-yun,LIU Chuan-jin,XU Jing,et al.InSAR Observation and Inversion of the Seismogenic Fault for the 2017 Jiuzhaigou Ms 7.0 Earthquake in China[J].Chinese Journal of Geophysics,2017,60(10):4069-4082.
[7] 单新建,屈春燕,龚文瑜,等.2017年8月8日四川九寨沟Ms 7.0级地震InSAR同震形变场及断层滑动分布反演[J].地球物理学报,2017,60(12):4527-4536.
SHAN Xin-jian,QU Chun-yan,GONG Wen-yu,et al.Co-seismic Deformation Field of the Jiuzhaigou Ms 7.0 Earthquake from Sentinel-1A InSAR Data and Fault Slip Inversion[J].Chinese Journal of Geophy-sics,2017,60(12):4527-4536.
[8] 温少妍,李成龙,李 金.2020年1月19日新疆伽师Ms 6.4地震InSAR同震形变场特征及发震构造初步探讨[J].内陆地震,2020,34(1):1-9.
WEN Shao-yan,LI Cheng-long,LI Jin.Preliminary Discussion on Characteristics of Co-seismic Deformation Field and InSAR Seismogenic Structure for Xinjiang Jiashi Ms 6.4 Earthquake on January 19th,2020[J].Inland Earthquake,2020,34(1):1-9.
[9] 于书媛,骆佳骥,杨源源,等.InSAR数据约束的2021年5月21日云南漾濞Ms 6.4地震发震构造研究[J].地震工程学报,2021,43(4):777-783.
YU Shu-yuan,LUO Jia-ji,YANG Yuan-yuan,et al.Seismogenic Structure of the Yangbi,Yunnan Ms 6.4 Earthquake on May 21,2021 Constrained by InSAR Data[J].China Earthquake Engineering Journal,2021,43(4):777-783.
[10] 朱俊文,姚赟胜,张 波.基于Sentinel-1A数据反演漾濞Ms 6.4地震的同震形变场及断层几何参数[J].地震工程学报,2021,43(4):784-790.
ZHU Jun-wen,YAO Yun-sheng,ZHANG Bo.Inversion of the Coseismic Deformation Field and Fault Geometric Parameters of the Yangbi Ms 6.4 Earthquake Based on Sentinel-1A Data[J].China Earthquake Engineering Journal,2021,43(4):784-790.
[11] 张克亮,甘卫军,梁诗明,等.2021年5月21日Ms 6.4漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J].地球物理学报,2021,64(7):2253-2266.
ZHANG Ke-liang,GAN Wei-jun,LIANG Shi-ming,et al.Coseismic Displacement and Slip Distribution of the 2021 May 21,Ms 6.4,Yangbi Earthquake Derived from GNSS Observations[J].Chinese Journal of Geophysics,2021,64(7):2253-2266.
[12] 王光明,吴中海,彭关灵,等.2021年5月21日漾濞Ms 6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J].地质力学学报,2021,27(4):662-678.
WANG Guang-ming,WU Zhong-hai,PENG Guan-ling,et al.Seismogenic Fault and Its Rupture Characteristics of the 21 May,2021 Yangbi Ms 6.4 Earthquake:Analysis Results from the Relocation of the Earthquake Sequence[J].Journal of Geomechanics,2021,27(4):662-678.
[13] 王绍俊,刘云华,单新建,等.2021年云南漾濞Ms 6.4地震同震地表形变与断层滑动分布[J].地震地质,2021,43(3):692-705.
WANG Shao-jun,LIU Yun-hua,SHAN Xin-jian,et al.Co-seismic Surface Deformation and Slip Models of the 2021 Ms 6.4 Yangbi(Yunnan,China)Earthquake[J].Seismology and Geology,2021,43(3):692-705.
[14] 李大虎,丁志峰,吴萍萍,等.2021年5月21日云南漾濞Ms 6.4地震震区地壳结构特征与孕震背景[J].地球物理学报,2021,64(9):3083-3100.
LI Da-hu,DING Zhi-feng,WU Ping-ping,et al.The Characteristics of Crustal Structure and Seismogenic Background of Yangbi Ms 6.4 Earthquake on May 21,2021 in Yunnan Province[J].Chinese Journal of Geophysics,2021,64(9):3083-3100.
[15] 杨九元,温扬茂,许才军.2021年5月21日云南漾濞Ms 6.4地震:一次破裂在隐伏断层上的潜走滑事件[J].地球物理学报,2021,64(9):3101-3110.
YANG Jiu-yuan,WEN Yang-mao,XU Cai-jun.The 21 May 2021 Ms 6.4 Yangbi(Yunnan)Earthquake:A Shallow Strike-slip Event Rupturing in a Blind Fault[J].Chinese Journal of Geophysics,2021,64(9):3101-3110.
[16] 段梦乔,赵翠萍,周连庆,等.2021年5月21日云南漾濞Ms 6.4地震序列发震构造[J].地球物理学报,2021,64(9):3111-3125.
DUAN Meng-qiao,ZHAO Cui-ping,ZHOU Lian-qing,et al.Seismogenic Structure of the 21 May 2021 Ms 6.4 Yunnan Yangbi Earthquake Sequence[J].Chinese Journal of Geophysics,2021,64(9):3111-3125.
[17] 龙 锋,祁玉萍,易桂喜,等.2021年5月21日云南漾濞Ms 6.4地震序列重新定位与发震构造分析[J].地球物理学报,2021,64(8):2631-2646.
LONG Feng,QI Yu-ping,YI Gui-xi,et al.Relocation of the Ms 6.4 Yangbi Earthquake Sequence on May 21,2021 in Yunnan Province and Its Seismogenic St-ructure Analysis[J].Chinese Journal of Geophysics,2021,64(8):2631-2646.
[18] 常祖峰,常 昊,臧 阳,等.维西—乔后断裂新活动特征及其与红河断裂的关系[J].地质力学学报,2016,22(3):517-530.
CHANG Zu-feng,CHANG Hao,ZANG Yang,et al.New Activity Characteristics of Weixi-Qiaohou Fault and Its Relationship with Honghe Fault[J].Journal of Geomechanics,2016,22(3):517-530.
[19] WERNER C,WEGMULLER U,STROZZI T,et al.Gamma SAR and Interferometric Processing Software[J].ESA Bulletin,2000,104:15-23.
[20] GOLDSTEIN R M,WERNER C L.Radar Interferogram Filtering for Geophysical Applications[J].Geophysics Resource Letter,1998,25:4035-4038.
[21] ROSEN P A,HENSLEY S,ZEBKER H A,et al.Surface Deformation and Coherence Measurements of Ki-lauea Volcano,Hawaii,from SIR-C Radar Interfero-metry[J].Journal of Geophysical Research:Planets,1996,101(E10):23109-23125.
[22] EINEDER M,HUBIG M,MILCKE B.Unwrapping Large Interferograms Using the Minimum Cost Flow Algorithm[C]∥IEEE.Proceedings of the IEEE International Geoscience and Remote Sensing Symposium.Seattle:IEEE,1998:187-199.
[23] 杨成生,张 勤,曲菲霏,等.基于相位回归性分析的SAR差分干涉图大气延迟改正研究[J].上海国土资源,2012,33(3):11-15.
YANG Cheng-sheng,ZHANG Qin,QU Fei-fei,et al.Obtaining an Atmospheric Delay Correction for Differential SAR Interferograms Based on Regression Analysis of the Atmospheric Delay Phase[J].Shanghai Land Resource,2012,33(3):11-15.
[24] 季灵运,朱良玉,刘传金,等.InSAR同震形变场及其在震源参数确定中的应用研究进展[J].地球科学与环境学报,2021,43(3):604-620.
JI Ling-yun,ZHU Liang-yu,LIU Chuan-jin,et al.Review on InSAR-derived Coseismic Deformation and the Determination of Earthquake Source Parameters[J].Journal of Earth Sciences and Environment,2021,43(3):604-620.
[25] BAGNARD I M,HOOPER A.Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties:A Bayesian Approach[J].Geochemistry,Geophysics,Geosystems,2018,19(7):2194-2211.
[26] YANG C S,HAN B Q,ZHAO C Y,et al.Co- and Post-seismic Deformation Mechanisms of the Mw 7.3 Iran Earthquake(2017)Revealed by Sentinel-1 InSAR Observations[J].Remote Sensing,2019,11(4):11040418.
[27] LOHMAN R B,SIMONS M.Some Thoughts on the Use of InSAR Data to Constrain Models of Surface Deformation:Noise Structure and Data Downsampling[J].Geochemistry,Geophysics,Geosystems,2005,6(1):Q01007.
[28] WANG R J,DIAO F Q,HOECHNER A.SDM:A Geodetic Inversion Code Incorporating with Layered Cru-st Structure and Curved Fault Geometry[R].Vienna:EGU,2013.
[29] WANG R J,PAROLAI S,ZSCHAU J,et al.The 2011 Mw 9.0 Tohoku Earthquake:Comparison of GPS and Strong-motion Data[J].Bulletin of the Seismological Society of America,2013,103:1336-1347.
[30] MOTAGH M,BAHROUDI A,HAGHIGHI M H,et al.The 18 August 2014 Mw 6.2 Mormori,Iran,Earthquake:A Thin-skinned Faulting in the Zagros Mountain Inferred from InSAR Measurements[J].Seismological Research Letters,2015,86(3):775-782.
[31] SCHOLZ C H.The Mechanics of Earthquakes and Faulting[M].New York:Cambridge University Pre-ss,1990.
[32] PINAR A,HONKURA Y,KUGE K.Seismic Activity Triggered by the 1999 Izmit Earthquake and Its Implications for the Assessment of Future Seismic Risk[J].Geophysical Journal International,2001,146(1):F1-F7.
[33] TODA S J,STEIN R S,RICHARDS-DINGER K,et al.Forecasting the Evolution of Seismicity in Southern California:Animations Built on Earthquake Stress Tr-ansfer[J].Journal of Geophysical Research:Solid Ear-th,2005,110(B5):B05S16.
[34] LIN J,STEIN R S.Stress Triggering in Thrust and Subduction Earthquakes,and Stress Interaction Between the Southern San Andreas and Nearby Thrust and Strike-slip Faults[J].Journal of Geophysical Research:Solid Earth,2004,109(B2):B02303.
[35] WESSEL P,LUIS J,UIEDA L,et al.The Generic Mapping Tools Version 6[J].Geochemistry,Geophy-sics,Geosystems,2019,20(11):5556-5564.

Memo

Memo:
-
Last Update: 2022-06-01