|Table of Contents|

Spatial Distribution and Influencing Factors of Geohazards Induced by the 2022 Mw 6.6 Luding(Sichuan, China)Earthquake(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第06期
Page:
971-985
Research Field:
纪念刘国昌先生诞辰110周年专辑
Publishing date:

Info

Title:
Spatial Distribution and Influencing Factors of Geohazards Induced by the 2022 Mw 6.6 Luding(Sichuan, China)Earthquake
Author(s):
CHEN Bo12 LI Zhen-hong1234* HUANG Wu-biao12 LIU Zhen-jiang12 ZHANG Cheng-long2 DU Jian-tao12 SONG Chuang12 DING Ming-tao123 ZHU Wu1234 ZHANG Shuang-cheng1234 WANG Jian-wei56 PENG Jian-bing134
Keywords:
Luding earthquake coseismic landslide optical remote sensing InSAR visual interpretation landslide susceptibility spatial distribution influencing factor
PACS:
P23; P694
DOI:
10.19814/j.jese.2022.10012
Abstract:
On 5 September 2022, an Mw 6.6 earthquake struck Luding county, Sichuan province, China, which triggered a large number of geohazards such as landslides and collapses, leading to serious casualties and economic losses. Rapid access to landslide susceptibility and the actual distribution maps of coseismic landslides are critical for disaster management. In this study, we combined optical remote sensing image interpretation with the Generic Atmospheric Correction Online Service(GACOS)assisted InSAR stacking technique to map pre-event landslides, and then used the detected landslide dataset to generate a landslide susceptibility map in the earthquake-affected area using a machine learning algorithm. In addition, we used multi-source optical remote sensing images to establish an inventory of 2 692 coseismic landslides and analyze its relationships with topography, seismic and geological factors. Our results showed that 70.2% of the total coseismic landslide area(47 km2)were within the areas with moderate or higher susceptibility. These coseismic landslides were mainly distributed in elevations of 1 200-2 400 m, with slopes of 35°-50°, 4-20 km from the epicenter, within 1 km of faults and with a lithology of sericites silt slate. The coseismic landslides also damaged at least 10.34 km of roads. It is believed that this research can provide data support for the assessment and prevention of geohazards in the earthquake-affected areas.

References:

[1] 张 龙,周一剑,张 旭,等.2022年四川泸定Ms 6.8地震:一次填补地震空区的陆内强震[J].中国科学:地球科学,2022(评审中).
ZHANG Long,ZHOU Yi-jian,ZHANG Xu,et al.The 2022 Ms 6.8 Luding,Sichuan Earthquake Sequence:A Cascade Rupture Filling the Seismic Gap[J].Science China:Earth Sciences,2022(in Review).
[2] 黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,28(6):1239-1249.
HUANG Run-qiu.Mechanism and Geomechanical Mo-des of Landslide Hazards Triggered by Wenchuan 8.0 Earthquake[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239-1249.
[3] XU C,XU X W,YAO X W,et al.Three(Nearly)Complete Inventories of Landslides Triggered by the May 12,2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis[J].Landslides,2014,11(3):441-461.
[4] 殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444.
YIN Yue-ping.Researches on the Geo-hazards Triggered by Wenchuan Earthquake,Sichuan[J].Journal of Engineering Geology,2008,16(4):433-444.
[5] XU C,XU X W,YU G H,et al.Landslides Triggered by Slipping-fault-generated Earthquake on a Plateau:An Example of the 14 April 2010,Ms 7.1,Yushu,China Earthquake[J].Landslides,2013,10(4):421-431.
[6] 殷跃平,张永双,马寅生,等.青海玉树Ms 7.1级地震地质灾害主要特征[J].工程地质学报,2010,18(3):289-296.
YIN Yue-ping,ZHANG Yong-shuang,MA Yin-sheng,et al.Resarch on Major Characteristics of Geohazards Induced by the Yushu Ms 7.1 Earthquake[J].Journal of Engineering Geology,2010,18(3):289-296.
[7] LAN H X,LI L P,ZHANG Y S,et al.Risk Assessment of Debris flow in Yushu Seismic Area in China:A Perspective for the Reconstruction[J].Natural Hazards and Earth System Sciences,2013,13(11):2957-2968.
[8] XU C,XU X W,SHYU J B H.Database and Spatial Distribution of Landslides Triggered by the Lushan,China Mw 6.6 Earthquake of 20 April 2013[J].Geomorphology,2015,248:77-92.
[9] 兰恒星,周成虎,高 星,等.四川雅安芦山地震灾区次生地质灾害评估及对策建议[J].地理科学进展,2013,32(4):499-504.
LAN Heng-xing,ZHOU Cheng-hu,GAO Xing,et al.Secondary Geological Hazard Assessment and Hazard Mitigation Countermeasures in Lushan,Ya'an Earthquake,Sichuan Province[J].Progress in Geography,2013,32(4):499-504.
[10] YANG Z H,LAN H X,LIU H J,et al.Post-earthquake Rainfall-triggered Slope Stability Analysis in the Lushan Area[J].Journal of Mountain Science,2015,12(1):232-242.
[11] WANG Z,SU J,LIU C,et al.New Insights into the Generation of the 2013 Lushan Earthquake(Ms 7.0),China[J].Journal of Geophysical Research:Solid Ear-th,2015,120(5):3507-3526.
[12] FAN X M,SCARINGI G,XU Q,et al.Coseismic Landslides Triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou Earthquake(Sichuan,China):Factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification[J].Landslides,2018,15(5):967-983.
[13] 徐锡伟,陈桂华,王启欣,等.九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J].地球物理学报,2017,60(10):4018-4026.
XU Xi-wei,CHEN Gui-hua,WANG Qi-xin,et al.Discussion on Seismogenic Structure of Jiuzhaigou Earthquake and Its Implication for Current Strain State in the Sountheastern Qinghai-Tibet Plateau[J].Chinese Journal of Geophysics,2017,60(10):4018-4026.
[14] TIAN Y Y,XU C,MA S Y,et al.Inventory and Spatial Distribution of Landslides Triggered by the 8th August 2017 Mw 6.5 Jiuzhaigou Earthquake,China[J].Journal of Earth Science,2019,30(1):206-217.
[15] GUZZETTI F,MONDINI A C,CARDINALI M,et al.Landslide Inventory Maps:New Tools for an Old Pro-blem[J].Earth Science Reviews,2012,112(1):42-66.
[16] 铁永波,张宪政,卢佳燕,等.四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J].水文地质工程地质,2022,DOI:10.16030/j.cnki.issn.1000-3665.202209023.
TIE Yong-bo,ZHANG Xian-zheng,LU Jia-yan,et al.Characteristics of Geological Hazards and It's Mitigations of the Ms 6.8 Earthquake in Luding County,Sichuan Province[J].Hydrogeology & Engineering Geology,2022,DOI:10.16030/j.cnki.issn.1000-3665.202209023.
[17] 王 欣,方成勇,唐小川,等.泸定Ms 6.8级地震诱发滑坡应急评价研究[J].武汉大学学报(信息科学版),2022,DOI:10.13203/J.whugis20220586.
WANG Xin,FANG Cheng-yong,TANG Xiao-chuan,et al.Research on Emergency Evaluation of Landslides Induced by Luding Ms 6.8 Earthquake[J].Geomatics and Information Science of Wuhan University,2022,DOI:10.13203/J.whugis20220586.
[18] 范宣梅,王 欣,戴岚欣,等.2022年Ms 6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J].工程地质学报,2022,30(5):1504-1516.
FAN Xuan-mei,WANG Xin,DAI Lan-xin,et al.Characteristics and Spatial Distribution Pattern of Ms 6.8 Luding Earthquake Occurred on September 5,2022[J].Journal of Engineering Geology,2022,30(5):1504-1516.
[19] 李为乐,陈俊伊,陆会燕,等.泸定Ms 6.8地震对海螺沟冰川的影响应急分析[J].武汉大学学报(信息科学版),2022,DOI:10.13203/J.whugis20220593.
LI Wei-le,CHEN Jun-yi,LU Hui-yan,et al.Emergency Analysis of the Impact of the Luding Ms 6.8 Earthquake on Hailuogou Glacier[J].Geomatics and Information Science of Wuhan University,2022,DOI:10.13203/J.whugis20220593.
[20] 白明坤,CHEVALIER M L,李海兵,等.鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究[J].地质学报,2022,96(7):2312-2332.
BAI Ming-kun,CHEVALIER M L,LI Hai-bing,et al.Late Quaternary Slip Rate and Earthquake Ha-zard Along the Qianning Segment,Xianshuihe Fault[J].Acta Geologica Sinica,2022,96(7):2312-2332.
[21] BAI M K,CHEVALIER M L,PAN J W,et al.Southeastward Increase of the Late Quaternary Slip-rate of the Xianshuihe Fault,Eastern Tibet:Geodynamic and Seismic Hazard Implications[J].Earth and Planetary Science Letters,2018,485:19-31.
[22] ZHANG P Z.A Review on Active Tectonics and Deep Crustal Processes of the Western Sichuan Region,Eastern Margin of the Tibetan Plateau[J].Tectonophysics,2013,584:7-22.
[23] PAN Y J,SHEN W B.Contemporary Crustal Movement of Southeastern Tibet:Constraints from Dense GPS Measurements[J].Scientific Reports,2017,7:45348.
[24] 徐 晶,邵志刚,刘 静,等.基于库仑应力变化分析巴颜喀拉地块东端的强震相互关系[J].地球物理学报,2017,60(10):4056-4068.
XU Jing,SHAO Zhi-gang,LIU Jing,et al.Analysis of Interaction Between Great Earthquakes in the Eastern Bayan Har Block Based on Changes of Coulomb Stre-ss[J].Chinese Journal of Geophysics,2017,60(10):4056-4068.
[25] 程 佳,徐锡伟.巴颜喀拉块体周缘强震间应力作用与丛集活动特征初步分析[J].地震地质,2018,40(1):133-154.
CHENG Jia,XU Xi-wei.Features of Earthquake Clu-stering from Calculation of Coulomb Stress Around the Bayan Har Block,Tibetan Plateau[J].Seismology and Geology,2018,40(1):133-154.
[26] 廖海军,刘 巧,钟 妍,等.1990~2019年贡嘎山地区典型冰川表碛覆盖变化及其空间差异[J].地理学报,2021,76(11):2647-2659.
LIAO Hai-jun,LIU Qiao,ZHONG Yan,et al.Supraglacial Debris-cover Change and Its Spatial Heterogeneity in the Mount Gongga,1990-2019[J].Acta Geographica Sinica,2021,76(11):2647-2659.
[27] 许 强.对地质灾害隐患早期识别相关问题的认识与思考[J].武汉大学学报(信息科学版),2020,45(11):4-12.
XU Qiang.Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J].Geomatics and Information Science of Wuhan University,2020,45(11):4-12.
[28] CHEN B,LI Z H,ZHANG C L,et al.Wide Area Detection and Distribution Characteristics of Landslides Along Sichuan Expressways[J].Remote Sensing,2022,14(14):3431.
[29] 张成龙,李振洪,余 琛,等.利用GACOS辅助下InSAR Stacking对金沙江流域进行滑坡监测[J].武汉大学学报(信息科学版),2021,46(11):1649-1657.
ZHANG Cheng-long,LI Zhen-hong,YU Chen,et al.Landslide Detection of the Jinsha River Region Using GACOS Assisted InSAR Stacking[J].Geomatics and Information Science of Wuhan University,2021,46(11):1649-1657.
[30] XIAO R Y,YU C,LI Z H,et al.General Survey of Large-scale Land Subsidence by GACOS-corrected InSAR Stacking:Case Study in North China Plain[J].Proceedings of the International Association of Hyd-rological Sciences,2020,382:213-218.
[31] ZHANG C L,LI Z H,YU C,et al.An Integrated Framework for Wide-area Active Landslides Detection with InSAR Observations and SAR Pixel Offsets[J].Landslides,2022,19:2905-2923.
[32] 李振洪,朱 武,余 琛,等.雷达影像地表形变干涉测量的机遇、挑战与展望[J].测绘学报,2022,51(7):1485-1519.
LI Zhen-hong,ZHU Wu,YU Chen,et al.Interferometric Synthetic Aperture Radar for Deformation Mapping:Opportunities,Challenges and the Outlook[J].Acta Geodaetica et Cartographica Sinica,2022,51(7):1485-1519.
[33] YU C,LI Z H,BAI L,et al.Successful Applications of Generic Atmospheric Correction Online Service for InSAR(GACOS)to the Reduction of Atmospheric Effects on InSAR Observations[J].Journal of Geodesy and Geoinformation Science,2021,4(1):109-115.
[34] WEGNULLER U,WERNER C,STROZZI T,et al.Sentinel-1 Support in the GAMMA Software[J].Procedia Computer Science,2016,100:1305-1312.
[35] YU C,LI Z H,PENNA N T,et al.Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J].Journal of Geophy-sical Research:Solid Earth,2018,123(10):9202-9222.
[36] YU C,LI Z H,PENNA N T.Interferometric Synthe-tic Aperture Radar Atmospheric Correction Using a GPS-based Iterative Tropospheric Decomposition Model[J].Remote Sensing of Environment,2018,204:109-121.
[37] YU C,PENNA N T,LI Z H.Generation of Real-time Mode High-resolution Water Vapor Fields from GPS Observations[J].Journal of Geophysical Research:Atmospheres,2017,122(3):2008-2025.
[38] ZHANG J,ZHU W,CHENG Y,et al.Landslide Detection in the Linzhi-Ya'an Section Along the Sichuan-Tibet Railway Based on InSAR and Hot Spot Analysis Methods[J].Remote Sensing,2021,13(18):3566.
[39] 李振洪,张成龙,陈 博,等.一种基于多源遥感的滑坡防灾技术框架及其工程应用[J].地球科学,2022,47(6):1901-1916.
LI Zhen-hong,ZHANG Cheng-long,CHEN Bo,et al.A Technical Framework of Landslide Prevention Ba-sed on Multi-source Remote Sensing[J].Earth Science,2022,47(6):1901-1916.
[40] 范宣梅,方成勇,戴岚欣,等.地震诱发滑坡空间分布概率近实时预测研究:以2022年6月1日四川芦山地震为例[J].工程地质学报,2022,20(3):729-739.
FAN Xuan-mei,FANG Cheng-yong,DAI Lan-xin,et al.Near Real Time Prediction of Spatial Distribution Probability of Earthquake-induced Landslides:Take the Lushan Earthquake on June 1,2022 as an Example[J].Journal of Engineering Geology,2022,20(3):729-739.
[41] HUANG W B,DING M T,LI Z H,et al.An Efficient User-friendly Integration Tool for Landslide Susceptibility Mapping Based on Support Vector Machines:SVM-LSM Toolbox[J].Remote Sensing,2022,14(14):3408.
[42] 黄武彪,丁明涛,王 栋,等.基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价[J].地球科学,2022,47(6):2015-2030.
HUANG Wu-biao,DING Ming-tao,WANG Dong,et al.Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model Along Sichuan-Tibet Traffic Corridor[J].Earth Science,2022,47(6):2015-2030.
[43] 张成龙,李振洪,张双成,等.综合遥感解译2022年Mw 6.7青海门源地震地表破裂带[J].武汉大学学报(信息科学版),2022,47(8):1257-1270.
ZHANG Cheng-long,LI Zhen-hong,ZHANG Shuang-cheng,et al.Surface Ruptures of the 2022 Mw 6.7 Menyuan Earthquake Revealed by Integrated Remote Sensing[J].Geomatics and Information Science of Wuhan University,2022,47(8):1257-1270.
[44] AIAZZI B,BARONTI S,SELVA M,et al.Enhanced Gram-Schmidt Spectral Sharpening Based on Multivariate Regression of MS and Pan Data[C]∥IEEE.IEEE International Geoscience and Remote Sensing.Denver:IEEE,2006:3789-3792.
[45] 韩炳权,刘振江,陈 博,等.2022年泸定Mw 6.6地震InSAR同震形变与滑动分布[J].武汉大学学报(信息科学版),2022,DOI:10.13203/J.whugis20220636.
HAN Bing-quan,LIU Zhen-jiang,CHEN Bo,et al.Coseismic Deformation and Slip Distribution of the 2022 Luding Mw 6.6 Earthquake Revealed by InSAR Observations[J].Geomatics and Information Science of Wuhan University,2022,DOI:10.13203/J.whugis20220636.
[46] 黄润秋,李为乐.“5·12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
HUANG Run-qiu,LI Wei-le.Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May,2008[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585-2592.
[47] WU C H,CUI P,LI Y S,et al.Seismogenic Fault and Topography Control on the Spatial Patterns of Landslides Triggered by the 2017 Jiuzhaigou Earthquake[J].Journal of Mountain Science,2018,15(4):793-807.
[48] 叶天竺,黄崇轲,邓志奇.1:2 500 000中华人民共和国数字地质图空间数据库[J].中国地质,2017,44(增1):19-24.
YE Tian-zhu,HUANG Chong-ke,DENG Zhi-qi.Spatial Database of 1:2 500 000 Digital Geologic Map of People's Republic of China[J].Geology in China,2017,44(S1):19-24.

Memo

Memo:
-
Last Update: 2022-11-25