|Table of Contents|

Evolution of the 2018 Baige Landslides Revealed by Optical Remote Sensing Pixel Offsets in Jinsha River Basin, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第06期
Page:
1002-1015
Research Field:
纪念刘国昌先生诞辰110周年专辑
Publishing date:

Info

Title:
Evolution of the 2018 Baige Landslides Revealed by Optical Remote Sensing Pixel Offsets in Jinsha River Basin, China
Author(s):
DONG Yue12 DING Ming-tao123* LI Xin-long12 ZHANG Xue-song12 HUANG Wu-biao12 LIU Zhen-jiang12 LI Zhen-hong123
(1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 2. Big Data Center for Geosciences and Satellites, Chang'an University, Xi'an 710054, Shaanxi, China; 3. Key Laboratory of Western China's Mineral Resources and Geological Engineering of Ministry of Education, Chang' an University, Xi'an 710054, Shaanxi, China)
Keywords:
optical remote sensing offset-tracking technology time-series inversion algorithm COSI-Corr CARST DEM differential deformation monitoring Baige landslide Jinsha River Basin
PACS:
P237
DOI:
10.19814/j.jese.2022.05025
Abstract:
With the increasing number of optical remote sensing satellites and the improvement of image quality, the optical images show great potential for monitoring surface deformation. Taking the typical high-elevation Baige landslides during 2018 in Jinsha River Basin as examples, the pixel offset-tracking method and time-series inversion algorithm were employed to process Sentinel-2 optical images for extracting the surface displacement time series of “10·10” and “11·3” Baige landslides. The results show that ① the cumulative surface displacement before “10·10” Baige landslide is up to 31.69 m from 13 November 2015 to 5 February 2018, the time series displacement presents an obvious process characteristics of “initial start→constant deformation→accelerated deformation”; ② the cumulative surface displacement before “11·3” Baige landslide in the EW direction is about 12.89 m(about 1 pixel)from 28 October 2018 to 2 November 2018, which is consistent with radar image offset-tracking results; ③ after “11·3” Baige landslide, the cumulative surface displacement in the EW direction of some residual deposits is up to 7.71 m from 16 January 2020 to 4 February 2022, and clear sliding signs can be observed, indicating a high risk for a new disaster. Furthermore, the reliability of the optical image offset-tracking method for detecting surface deformation is demonstrated through the comparisons between two offset-tracking softwares of COSI-Corr and CARST with InSAR and UAV 3D results.

References:

[1] 孙建霖.时序InSAR技术及其在滑坡形变监测中的应用:以高家湾滑坡为例[D].兰州:兰州大学,2019.
SUN Jian-lin.Time-series InSAR Technology and Its Application in Landslide Deformation Monitoring:A Case Study of Gaojiawan Landslide[D].Lanzhou:Lanzhou University,2019.
[2] 杨明生.长时序多源遥感的滑坡变化监测方法研究[D].北京:中国科学院大学,2018.
YANG Ming-sheng.Method Research on Landslide Change Monitoring Based on Long Time Series Multi-source Remote Sensing[D].Beijing:University of Chinese Academy of Sciences,2018.
[3] ALI E,XU W B,DING X L.Improved Optical Image Matching Time Series Inversion Approach for Monitoring Dune Migration in North Sinai Sand Sea:Algorithm Procedure,Application,and Validation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,164:106-124.
[4] 李振洪,张成龙,陈 博,等.一种基于多源遥感的滑坡防灾技术框架及其工程应用[J].地球科学,2022,47(6):1901-1916.
LI Zhen-hong,ZHANG Cheng-long,CHEN Bo,et al.A Technical Framework of Landslide Prevention Ba-sed on Multi-source Remote Sensing and Its Engineering Application[J].Earth Science,2022,47(6):1901-1916.
[5] 张成龙,李振洪,张双成,等.综合遥感解译2022年Mw 6.7青海门源地震地表破裂带[J].武汉大学学报(信息科学版),2022,47(8):1257-1270.
ZHANG Cheng-long,LI Zhen-hong,ZHANG Shuang-cheng,et al.Surface Reptures of the 2022 Mw 6.7 Menyuan Earthquake Revealed by Integrated Remote Sensing[J].Geomatics and Information Science of Wuhan University,2022,47(8):1257-1270.
[6] 杨成生,董继红,朱赛楠,等.金沙江结合带巴塘段滑坡群InSAR探测识别与形变特征[J].地球科学与环境学报,2021,43(2):398-408.
YANG Cheng-sheng,DONG Ji-hong,ZHU Sai-nan,et al.Detection,Identification,and Deformation Cha-racteristics of Landslide Groups by InSAR in Batang Section of Jinsha River Convergence Zone,China[J].Journal of Earth Sciences and Environment,2021,43(2):398-408.
[7] CHEN B,LI Z H,ZHANG C L,et al.Wide Area Detection and Distribution Characteristics of Landslides Along Sichuan Expressways[J].Remote Sensing,2022,14(14):3431.
[8] MICHEL R,AVOUAC J P,TABOURY J.Measuring Ground Displacements from SAR Amplitude Images:Application to the Landers Earthquake[J].Geophysical Research Letters,1999,26(7):875-878.
[9] STROZZI T,LUCKMAN A,MURRAY T,et al.Glacier Motion Estimation Using SAR Offset-tracking Procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2384-2391.
[10] 刘云华,单新建,屈春燕,等.青海玉树Ms 7.1级地震地表形变场特征研究[J].中国科学:D辑,地球科学,2010,40(10):1310-1320.
LIU Yun-hua,SHAN Xin-jian,QU Chun-yan,et al.Earthquake Deformation Field Characteristics Associated with the 2010 Yushu Ms 7.1 Earthquake[J].Science in China:Series D,Earth Sciences,2010,40(10):1310-1320.
[11] ZHAO C Y,LU Z,ZHANG Q.Time-series Deformation Monitoring over Mining Regions with SAR Intensity-based Offset Measurements[J].Remote Sensing Letters,2013,4(5):436-445.
[12] DING C,ZHANG L,LIAO M S,et al.Quantifying the Spatio-temporal Patterns of Dune Migration near Minqin Oasis in Northwestern China with Time Series of Landsat-8 and Sentinel-2 Observations[J].Remote Sensing of Environment,2020,236:111498.
[13] DING C,FENG G C,LIAO M S,et al.Displacement History and Potential Triggering Factors of Baige Landslides,China Revealed by Optical Imagery Time Series[J].Remote Sensing of Environment,2021,254:112253.
[14] ZHENG W J,PRITCHARD M E,WILLIS M J,et al.The Possible Transition from Glacial Surge to Ice Stream on Vavilov Ice Cap[J].Geophysical Research Letters,2019,46(23):13892-13902.
[15] VAN WYK D V M,WICKERT A D.Glacier Image Velocimetry:An Open-source Toolbox for Easy and Rapid Calculation of High-resolution Glacier Velocity Fields[J].The Cryosphere,2021,15(4):2115-2132.
[16] SCAMBOS T A,DUTKIEWICZ M J,WILSON J C.Application of Image Cross-correlation to the Mea-surement of Glacier Velocity Using Satellite Image Data[J].Remote Sensing of Environment,1992,42(3):177-186.
[17] 孔繁司,乔 刚,王卫安.基于光学影像的冰流速测量软件比较与分析[J].中国科技论文在线精品论文,2016,9(12):1240-1252.
KONG Fan-si,QIAO Gang,WANG Wei-an.Comparison of Four Ice Velocity Measurement Software Based on Optical Remote Sensing Images[J].Highlights of Sciencepaper Online,2016,9(12):1240-1252.
[18] ROSU A M,PIERROT-DESEILLIGNY,DELORME A,et al.Measurement of Ground Displacement from Optical Satellite Image Correlation Using the Free Open-source Software MicMac[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,100:48-59.
[19] LEPRINCE S,AYOUB F,KLINGER Y,et al.Co-registration of Optically Sensed Images and Correlation(COSI-Corr):An Operational Methodology for Ground Deformation Measurements[C]∥IEEE.2007 IEEE International Geoscience and Remote Sensing Symposium.Barcelona:IEEE,2007:1943-1946.
[20] MICHEL S,AVOUAC J P,AYOUB F,et al.Comparing Dune Migration Measured from Remote Sensing with Sand Flux Prediction Based on Weather Data and Model,a Test Case in Qatar[J].Earth and Planetary Science Letters,2018,497:12-21.
[21] CHEN K,AVOUAC J P,AATI S,et al.Cascading and Pulse-like Ruptures During the 2019 Ridgecrest Earthquakes in the Eastern California Shear Zone[J].Nature Communications,2020,11(1):22.
[22] MILES B W J,JORDAN J R,STOKES C R,et al.Recent Acceleration of Denman Glacier(1972-2017),East Antarctica,Driven by Grounding Line Retreat and Changes in Ice Tongue Configuration[J].The Cryosphere,2021,15(2):663-676.
[23] ZHENG W J,PRITCHARD M E,WILLIS M J,et al.The Possible Transition from Glacial Surge to Ice Stream on Vavilov Ice Cap[J].Geophysical Research Letters,2019,46(23):13892-13902.
[24] 贺礼家,冯广财,冯志雄,等.哨兵-2号光学影像地表形变监:以2016年Mw 7.8新西兰凯库拉地震为例[J].测绘学报,2019,48(3):339-351.
HE Li-jia,FENG Guang-cai,FENG Zhi-xiong,et al.Coseismic Displacements of 2016 Mw 7.8 Kaikoura,New Zealand Earthquake,Using Sentinel-2 Optical Images[J].Acta Geodaetica et Cartographica Sinica,2019,48(3):339-351.
[25] YANG W T,WANG Y J,WANG Y Q,et al.Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images[J].Landslides,2020,17(3):659-668.
[26] LEPRINCE S,BARBOT S,AYOUB F,et al.Automatic and Precise Orthorectification,Coregistration,and Subpixel Correlation of Satellite Images,Application to Ground Deformation Measurements[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1529-1558.
[27] BERARDINO P,FORNARO G,LANARI R,et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[28] 柳 林,宋豪峰,杜亚男,等.联合Sentinel-2和Landsat 8估计白格滑坡时序偏移量[J].武汉大学学报(信息科学版),2021,46(10):1460-1470.
LIU Lin,SONG Hao-feng,DU Ya-nan,et al.Time-series Offset Tracking of the Baige Landslide Based on Sentinel-2 and Landsat 8[J].Geomatics and Information Science of Wuhan University,2021,46(10):1460-1470.
[29] KONCA A O,LEPRINCE S,AVOUAC J P,et al.Rupture Process of the 1999 Mw 7.8 Kaikoura,New Zealand Earthquake,Using Sentinel-2 Optical Images[J].Acta Geodaetica et Cartographica Sinica,2019,48(3):339-351.
[25] YANG W T,WANG Y J,WANG Y Q,et al.Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images[J].Landslides,2020,17(3):659-668.
[26] LEPRINCE S,BARBOT S,AYOUB F,et al.Automatic and Precise Orthorectification,Coregistration,and Subpixel Correlation of Satellite Images,Application to Ground Deformation Measurements[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1529-1558.
[27] BERARDINO P,FORNARO G,LANARI R,et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[28] 柳 林,宋豪峰,杜亚男,等.联合Sentinel-2和Landsat 8估计白格滑坡时序偏移量[J].武汉大学学报(信息科学版),2021,46(10):1460-1470.
LIU Lin,SONG Hao-feng,DU Ya-nan,et al.Time-series Offset Tracking of the Baige Landslide Based on Sentinel-2 and Landsat 8[J].Geomatics and Information Science of Wuhan University,2021,46(10):1460-1470.
[29] KONCA A O,LEPRINCE S,AVOUAC J P,et al.Rupture Process of the 1999 b>w 7.1 Duzce Earthquake from Joint Analysis of SPOT,GPS,InSAR,Strong-motion,and Teleseismic Data:A Supershear Rupture with Variable Rupture Velocity[J].Bulletin of the Seismological Society of America,2010,100(1):267-288.
[30] 郑 茜,孙建宝,张 永.基于Landsat-8时间序列影像分析西昆仑山地区冰川滑移特征[J].大地测量与地球动力学,2016,36(7):604-608.
ZHENG Qian,SUN Jian-bao,ZHANG Yong.Fast and Uniformly Slipping Western-Kunlun Glaciers from Time-series Deformation Analysis Using Periodically Captured Landsat-8 Imagery[J].Journal of Geodesy and Geodynamics,2016,36(7):604-608.
[31] 刘传正.累计变形曲线类型与滑坡预测预报[J].工程地质学报,2021,29(1):86-95.
LIU Chuan-zheng.Three Types of Displacement-time Curves and Early Warning of Landslides[J].Journal of Engineering Geology,2021,29(1):86-95.
[32] LI M H,ZHANG L,SHI X G,et al.Monitoring Activate Motion of the Guobu Landslide near the Laxiwa Hydropower Station in China by Time-series Point-like Targets Offset Tracking[J].Remote Sensing of Environment,2019,221:80-93.
[33] COOK K L,DIETZE M.A Simple Workflow for Robust Low-cost UAV-derived Change Detection Without Ground Control Points[J].Earth Surface Dyna-mics,2019,7(4):1009-1017.
[34] PEPPA M V,MILLS J P,MOORE P,et al.Automated Co-registration and Calibration in SfM Photogrammetry for Landslide Change Detection[J].Earth Surface Processes and Landforms,2019,44(1):287-303.
[35] 陈 菲,王 塞,高云建,等.白格滑坡裂缝区演变过程及其发展趋势分析[J].工程科学与技术,2020,52(5):71-78.
CHEN Fei,WANG Sai,GAO Yun-jian,et al.Evolution of the Cracking Zones at the Site of the Baige Landslides and Their Future Development[J].Advanced Engineering Sciences,2020,52(5):71-78.
[36] YE Y X,SHAN J,BRUZZONE L,et al.Robust Regi-stration of Multimodal Remote Sensing Images Based on Structural Similarity[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(5):2941-2958.

Memo

Memo:
-
Last Update: 2022-11-25