|Table of Contents|

Comparison of Mafic-ultramafic and Granite-pegmatite “Small Intrusion Forming Large Deposit”—Taking Xiarihamu and Dahongliutan Super-large Deposits in Kunlun Metallogenic Belt, China as Examples(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第05期
Page:
1036-1048
Research Field:
庆贺汤中立院士从事地质工作七十周年专辑
Publishing date:

Info

Title:
Comparison of Mafic-ultramafic and Granite-pegmatite “Small Intrusion Forming Large Deposit”—Taking Xiarihamu and Dahongliutan Super-large Deposits in Kunlun Metallogenic Belt, China as Examples
Author(s):
LI Wen-yuan12 GAO Yong-bao13 ZHANG Zhao-wei12 REN Guang-li12 ZHANG Zhi-bing4 KONG Hui-lei12 WANG Ya-lei12
(1. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits of Ministry of Natural Resources, Xi'an 710119, Shaanxi, China; 2. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710119, Shaanxi, China; 3. Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100, Shaanxi, China; 4. Institute of Mineral Resources Research, China Metallurgical Geology Bureau, Beijing 101300, China)
Keywords:
small intrusion forming large deposit geological mutation exchange of crust and mantle material deep liquation extraordinary huge enrichment extreme geological effect Kunlun metallogenic belt
PACS:
P611
DOI:
10.19814/j.jese.2023.05049
Abstract:
Xiarihamu and Dahongliutan deposits, which are two super-large deposits distributed in Kunlun metallogenic belt, China, are formed in the Early Devonian structural cracking environment of Paleo-Tethys(411 Ma)and the Late Triassic closed collision background of Paleo-Tethys(204-202 Ma). The former is magmatic immiscible Ni-Co-sulfide deposit related with the mantle source mafic-ultramafic rocks, the latter is granite-pegmatite type lithium beryllium rare metal deposit related with the evolution of high magmatic differentiation of crust source granite-pegmatite system, and smaller magmatic rock volume contains large-scale metal elements, of which “small intrusion forming large deposit” is the common characteristics of these two deposits. The results show that Xiarihamu deposit is formed by intrusion-injection of the mantle partial melting of basic magma through deep liquation and magmatic differentiation, and Dahongliutan deposit is formed by intrusion of high differentiation evolution of pegmatites through the subductive muddy rock crust due to the deep heating melting formation of acidic magma, of which large-scale magma is the key. Ni and Co in olivine and pyroxene of mantle, even all dissolve into the magma, only relying on crystallization differentiation could not make Ni and Co enrichment of industrial value, only large-scale sulfide liquid phase-silicate melt between immiscibility(liquation)before olivine and pyroxene crystallization can make originally limited Ni and Co gathered in sulfide liquid phase and form a huge enrichment; and on the upper crust of argillaceous rock melting experiment, even all melting but only Li(the mass fraction is(100-200)×10-6)could cause enrichment, so only large-scale mud crust layer melt forming large-scale acidic magma can make the limited Li and Be in the process of magma highly differentiation evolution, and gather in high temperature hydrothermal fluid, eventually to extraordinary enrichment. It can be seen that large-scale magma is the premise of the extraordinary huge enrichment of metal elements in the two types of deposits, and the basis is that it must be concentrated in a limited and small volume of special physical properties. The extraordinary enrichment of limited volume is based on the dilution or depletion of metal elements in more magma. Therefore, “small intrusion forming large deposit” is the product of major mutation geological events, only the major geological events can make the large-scale magma created by the exchange of crust and mantle material, and experience non-equilibrium extreme geological effects, and make the final small intrusion rich in huge metal minerals. Based on the mineralization characteristics of magmatic Ni-Co-sulfide deposits, the theory of “small intrusion forming large deposit” is proposed, and the mineralization and prospecting studies of magmatic hydrothermal deposits related to acid magma have been proved continuously. Although its metallogenic function is different, the scientific paradigm has something in common. Through the comparative study of the surface structure, the general principle of its deep structure is explored, so as to enrich the scientific connotation of the theory of “small intrusion forming large deposit”.

References:

[1] LI C S,ZHANG Z W,LI W Y,et al.Geochronology,Petrology and Hf-S Isotope Geochemistry of the Newly-discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tibet Plateau,Western China[J].Lithos,2015,216/217:224-240.
[2] GAO Y B,BAGAS L,LI K,et al.Newly Discovered Triassic Lithium Deposits in the Dahongliutan Area,Northwest China:A Case Study for the Detection of Lithium-bearing Pegmatite Deposits in Rugged Terrains Using Remote-sensing Data and Images[J].Frontiers in Earth Science,2022,8:591966.
[3] 李文渊,张照伟,王亚磊,等.东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用研究[J].地球科学与环境学报,2022,44(1):1-19.
LI Wen-yuan,ZHANG Zhao-wei,WANG Ya-lei,et al.Tectonic Transformation of Proto- and Paleo-Tethys and the Metallization of Magmatic Ni-Cu-Co Sufide Deposits in Kunlun Orogen,Northwest China[J].Journal of Earth Sciences and Environment,2022,44(1):1-19.
[4] 李文渊,张照伟,高永宝,等.昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J].中国地质,2022,49(5):1385-1407.
LI Wen-yuan,ZHANG Zhao-wei,GAO Yong-bao,et al.Tectonic Transformation of the Kunlun Paleo-Tethyan Orogenic Belt and Related Mineralization of Critical Mineral Resources of Nickel,Cobalt,Manganese and Lithium[J].Geology in China,2022,49(5):1385-1407.
[5] 张志炳,李文渊,张 征,等.橄榄石成分对东昆仑夏日哈木超大型镍钴矿床岩浆过程的约束[J].地质与勘探,2023,59(4):704-715.
ZHANG Zhi-bing,LI Wen-yuan,ZHANG Zheng,et al.Constraints of Olivine Composition on the Magmatic Process of the Xiarihamu Super-large Ni-Co Sulfide Deposit in East Kunlun Orogenic Belt[J].Geology and Exploration,2023,59(4):704-715.
[6] 张照伟,王亚磊,邵 继,等.东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征[J].矿床地质,2021,40(6):1230-1247.
ZHANG Zhao-wei,WANG Ya-lei,SHAO Ji,et al.Metallogenic Characteristics of Xiarihamu Super-large Magmatic Nickel-cobalt Sulfide Deposit in Eastern Kunlun Orogenic Belt[J].Mineral Deposits,2021,40(6):1230-1247.
[7] CAO R,GAO Y B,CHEN B,et al.Pegmatite Magmatic Evolution and Rare Metal Mineralization of the Dahongliutan Pegmatite Field,Western Kunlun Orogen:Constraints from the B Isotopic Composition and Mineral-chemistry[J].International Geology Review,2023,65(7):1224-1242.
[8] YAN Q H,WANG H,CHI G X,et al.Recognition of a 600-km-long Late Triassic Rare Metal(Li-Rb-Be-Nb-Ta)Pegmatite Belt in the Western Kunlun Orogenic Belt,Western China[J].Economic Geology,2022,117(1):213-236.
[9] 孔会磊,任广利,李文渊,等.西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J].西北地质,2023,56(2):61-79.
KONG Hui-lei,REN Guang-li,LI Wen-yuan,et al.Geochronology,Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit,Western Kunlun,China[J].Northwestern Geology,2023,56(2):61-79.
[10] 李世金,孙丰月,高永旺,等.小岩体成大矿理论指导与实践:青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J].西北地质,2012,45(4):185-191.
LI Shi-jin,SUN Feng-yue,GAO Yong-wang,et al.The Theoretical Guidance and the Practice of Small Intrusions Forming Large Deposits:The Enlightenment and Significance for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu,East Kunlun,Qinghai[J].Northwestern Geology,2012,45(4):185-191.
[11] 王 冠,孙丰月,李碧乐,等.东昆仑夏日哈木铜镍矿镁铁质—超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J].地学前缘,2014,21(6):381-401.
WANG Guan,SUN Feng-yue,LI Bi-le,et al.Petrography,Zircon U-Pb Geochronology and Geochemistry of the Mafic-ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun,with Implications for Geodynamic Setting[J].Earth Science Frontiers,2014,21(6):381-401.
[12] SONG X Y,YI J N,CHEN L M,et al.The Giant Xia-rihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt,Northern Tibet Plateau,China[J].Economic Geology,2016,111(1):29-55.
[13] 吴福元,万 博,赵 亮,等.特提斯地球动力学[J].岩石学报,2020,36(6):1627-1674.
WU Fu-yuan,WAN Bo,ZHAO Liang,et al.Tethyan Geodynamics[J].Acta Petrologica Sinica,2020,36(6):1627-1674.
[14] 李文渊.古亚洲洋与古特提斯洋关系初探[J].岩石学报,2018,34(8):2201-2210.
LI Wen-yuan.The Primary Discussion on the Relationship Between Paleo-Asian Ocean and Paleo-Tethys Ocean[J].Acta Petrologica Sinica,2018,34(8):2201-2210.
[15] 李文渊.中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破 [J].地质力学学报,2022,28(5):793-820.
LI Wen-yuan.Study of Ore-forming Theoretical Innovation and Prospecting Breakthrough of Magmatic Copper-nickel-cobalt Sulfide Deposits in China[J].Journal of Geomechanics,2022,28(5):793-820.
[16] 张志炳.东昆仑夏日哈木铜镍硫化物矿床矿物成因意义探讨[D].北京:中国地质大学,2016.
ZHANG Zhi-bing.Genetic Significances from Minera-logy of Xiarihamu Ni-Cu Sulfide Deposit,Eastern Kunlun Orogenic Belt [D].Beijing:China University of Geosciences,2016.
[17] ROEDER P L,EMSLIE R F.Olivine-liquid Equilibrium[J].Contributions to Mineralogy and Petrology,1970,29(4):275-289.
[18] CHAI G,NALDRETT A J.The Jinchuan Ultramafic Intrusion:Cumulate of a High-Mg Basaltic Magma[J].Journal of Petrology,1992,33(2):277-303.
[19] LIU Y G,LI W Y,JIA Q Z,et al.The Dynamic Sulfide Saturation Process and a Possible Slab Break-off Model for the Giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt,Northern Qinghai-Tibet Plateau,China[J].Economic Geology,2018,113(6):1383-1417.
[20] DUAN J,LI C S,QIAN Z Z,et al.Multiple S Isotopes,Zircon Hf Isotopes,Whole-rock Sr-Nd Isotopes,and Spatial Variations of PGE Tenors in the Jinchuan Ni-Cu-PGE Deposit,NW China[J].Mineralium Deposita,2016,51(4):557-574.
[21] MCKENZIE D,BICKLE M J.The Volume and Composition of Melt Generated by Extension of the Lithosphere[J].Journal of Petrology,1988,29(3):625-679.
[22] ZHENG Y F,XU Z,CHEN L,et al.Chemical Geodynamics of Mafic Magmatism Above Subduction Zones [J].Journal of Asian Earth Sciences,2020,194:104185.
[23] 乔耿彪,张汉德,伍跃中,等.西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约 [J].地质学报,2015,89(7):1180-1194.
QIAO Geng-biao,ZHANG Han-de,WU Yue-zhong,et al.Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun:Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics[J].Acta Geologica Sinica,2015,89(7):1180-1194.
[24] 魏小鹏,王 核,胡 军,等.西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J].地球化学,2017,46(1):66-80.
WEI Xiao-peng,WANG He,HU Jun,et al.Geoche-mistry and Geochronology of the Dahongliutan Two-mica Granite Pluton in Western Kunlun Orogen:Geotectonic Implications[J].Geochimica,2017,46(1):66-80.
[25] YIN R,HUANG X L,XU Y G,et al.Mineralogical Constraints on the Magmatic-hydrothermal Evolution of Rare-elements Deposits in the Bailongshan Granitic Pegmatites,Xinjiang,NW China [J].Lithos,2020,352/353:105208.
[26] RUDNICK R L,GAO S.Composition of the Continental Crust[J].Treatise on Geochemistry,2003,3:1-64.
[27] MARSCHALL H R,WANLESS V D,SHIMIZU N,et al.The Boron and Lithium Isotopic Composition of Mid-ocean Ridge Basalts and the Mantle[J].Geo-chimica et Cosmochimica Acta,2017,207:102-138.
[28] MAGNA T,NOVAK M,CEMPIREK J,et al.Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-cesium-tantalum Pegmatites[J].Geology,2016,44(8):655-658.
[29] FAN J J,TANG G J,WEI G J,et al.Lithium Isotope Fractionation During Fluid Exsolution:Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun,NW Tibet[J].Lithos,2020,352/353:105236.
[30] JAHNS R H,BURNHAM C W.Experimental Stu-dies of Pegmatite Genesis:Ⅰ.A Model for the Derivation and Crystallization of Granitic Pegmatites[J].Economic Geology,1969,64(8):843-864.
[31] THOMAS R,DAVIDSON P.Water in Granite and Pegmatite-forming Melts[J].Ore Geology Reviews,2012,46:32-46.
[32] SHEN P,PAN H D,LI C H,et al.Newly-recognized Triassic Highly Fractionated Leucogranite in the Koktokay Deposit(Altai,China):Rare-metal Fertility and Connection with the No.3 Pegmatite [J].Gondwana Research,2022,112:24-51.
[33] 李建康,李 鹏,严清高,等.中国花岗伟晶岩的研究历程及发展态势[J].地质学报,2021,95(10):2996-3016.
LI Jian-kang,LI Peng,YAN Qing-gao,et al.History of Granitic Pegmatite Research in China[J].Acta Geologica Sinica,2021,95(10):2996-3016.
[34] ROGER F,MALAVIEILLE J,LELOUP P H,et al.Timing of Granite Emplacement and Cooling in the Songpan Garze Fold Belt(Eastern Tibetan Plateau)with Tectonic Implications [J].Journal of Asian Ear-th Sciences,2004,22(5):465-481.
[35] 许志琴,王汝成,赵中宝,等.试论中国大陆“硬岩型”大型锂矿带的构造背景[J].地质学报,2018,92(6):1091-1106.
XU Zhi-qin,WANG Ru-cheng,ZHAO Zhong-bao,et al.On the Structural Backgrounds of the Large-scale “Hard-rock Type” Lithium Ore Belts in China [J].Acta Geologica Sinica,2018,92(6):1091-1106.
[36] 丁 坤,梁 婷,周 义,等.西昆仑大红柳滩黑云母二长花岗岩岩石成因:来自锆石U-Pb年龄及Li-Hf同位素的证据[J].西北地质,2020,53(1):24-34.
DING Kun,LIANG Ting,ZHOU Yi,et al.Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen:Evidence from Zircon U-Pb Age and Li-Hf Isotope[J].Northwestern Geology,2020,53(1):24-34.
[37] THOMAS R,DAVIDSON P.Revisiting Complete Miscibility Between Silicate Melts and Hydrous Fluids,and the Extreme Enrichment of Some Elements in the Supercritical State:Consequences for the Formation of Pegmatites and Ore Deposits[J].Ore Geology Reviews,2016,72:1088-1101.
[38] 汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995.
TANG Zhong-li,LI Wen-yuan.The Metallogenic Mo-del and Geological Comparison of the Jinchuan Copper-nickel Sulfide(Platinum-containing)Deposit[M].Beijing:Geological Publishing House,1995.

Memo

Memo:
-
Last Update: 2023-10-15