|Table of Contents|

Petrogenesis of Late Neoarchean TTG Rocks in Liaonan Block, North China Craton and Its Tectonic Significance(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第05期
Page:
1192-1209
Research Field:
庆贺汤中立院士从事地质工作七十周年专辑
Publishing date:

Info

Title:
Petrogenesis of Late Neoarchean TTG Rocks in Liaonan Block, North China Craton and Its Tectonic Significance
Author(s):
ZHANG Hong-xiang1 LIU Jin1* SUN Bo2 LIU Zheng-hong1 YU Hong-chao1 DONG Ya-chao1
(1. College of Earth Sciences, Jilin University, Changchun 130061, Jilin, China; 2. Liaoning Metallurgical Geological Exploration Research Institute Co., Anshan 114038, Liaoning, China)
Keywords:
petrogenesis Neoarchean TTG rock Zircon U-Pb age geochemistry Liaonan block North China Craton
PACS:
P588.12; P597
DOI:
10.19814/j.jese.2023.04004
Abstract:
In order to enhance the understanding of Archean continental crust formation and evolution history of Liaonan block in North China Craton, the Neoarchean TTG(tonalite-trondhjemite-granodiorite)gneisses in Shijianfang area of Liaonan block were focused on, and the detailed field investigation, zircon U-Pb dating and Lu-Hf isotope analysis, and whole-rock geochemical analysis were intergrated. The results show that TTG gneiss in Shijianfang area crystallizes at(2 499.7±5.4)Ma. The TTG gneiss samples have high contents of SiO2(66.1%-69.1%)and Al2O3(14.6%-15.6%), are enriched in Na and depleted in K(K2O/Na2O is 0.41-0.51)with weakly positive Eu anomalies(1.06-1.59); the samples are relatively enriched in large ion lithophile elements(Ba, Rb, K, etc.)and high field strength elements(Zr, Hf, etc.), featured by high Sr/Y(44.3-69.5)and(La/Yb)N(11.8-24.0), and depleted zircon Hf isotopic composition with two-stage model ages of 2 903-2 687 Ma. Compared with TTG rocks derived from partial melting of the thickened lower crust, TTG gneisses in Shijianfang area have relatively higher contents of MgO, Cr and Ni. The above geochemical characteristics reveal TTG gneisses in Shijianfang area are typical medium-pressure TTG rocks, which is the product of partial melting of Meso-Neoarchean basaltic crust. The source area is rich in garnet and amphibolite, but short of rutile and plagioclase. Combined with previous studies, TTG gneisses in Shijianfang area are likely formed by the partial melting of subduction slabs, indicating the warm subduction tectonic system of the ancient continental margin. The North China Craton might be controlled by both plate tectonics and mantle plume tectonics during Late Neoarchean.

References:

[1] FISCHER R,GERYA T.Early Earth Plume-lid Tectonics:A High-resolution 3D Numerical Modelling Approach[J].Journal of Geodynamics,2016,100:198-214.
[2] PALIN R M,SANTOSH M,CAO W T,et al.Secular Change and the Onset of Plate Tectonics on Earth[J].Earth-science Reviews,2020,207:103172.
[3] 万渝生,董春艳,任 鹏,等.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J].岩石学报,2017,33(5):1405-1419.
WAN Yu-sheng,DONG Chun-yan,REN Peng,et al.Spatial and Temporal Distribution,Compositional Cha-racteristics and Formation and Evolution of Archean TTG Rocks in the North China Craton:A Synthesis[J].Acta Petrologica Sinica,2017,33(5):1405-1419.
[4] KUSKY T,WINDLEY B F,POLAT A,et al.Archean Dome-and-basin Style Structures Form During Growth and Death of Intraoceanic and Continental Margin Arcs in Accretionary Orogens[J].Earth-science Reviews,2021,220:103725.
[5] FU J H,LIU S W,SUN G Z,et al.Two Contrasting Neoarchean Metavolcanic Rock Suites in Eastern Hebei and Their Geodynamic Implications for the Northern North China Craton[J].Gondwana Research,2021,95:45-71.
[6] SUN G Z,HU Y L,LIU S W,et al.Featured Neoarchean Granitoid Association in the Central North China Craton:An Indicator of Warm Plate Subduction[J].Geological Society of America Bulletin,2023,135(1/2):295-309.
[7] SUN G Z,LIU S W,LÜ Y J,et al.Chronological Framework of Precambrian Dantazi Complex:Implications for the Formation and Evolution of the Northern North China Craton[J].Precambrian Research,2022,379:106819.
[8] MOYEN J F,MARTIN H.Forty Years of TTG Research[J].Lithos,2012,148:312-336.
[9] QIAN Q,HERMANN J.Partial Melting of Lower Crust at 10-15 kbar:Constraints on Adakite and TTG Formation[J].Contributions to Mineralogy and Petrology,2013,165(6):1195-1224.
[10] LIU P,GUO J H.Generation of Archaean TTG Gneisses Through Amphibole-dominated Fractionation[J].Journal of Geophysical Research:Solid Earth,2019,124(4):3605-3619.
[11] MOYEN J F.The Composite Archaean Grey Gneisses:Petrological Significance,and Evidence for a Non-unique Tectonic Setting for Archaean Crustal Growth[J].Lithos,2011,123(1/2/3/4):21-36.
[12] MARTIN H,MOYEN J F,GUITREAU M,et al.Why Archaean TTG Cannot Be Generated by MORB Melting in Subduction Zones[J].Lithos,2014,198/199:1-13.
[13] GE R F,ZHU W B,WILDE S A,et al.Remnants of Eoarchean Continental Crust Derived from a Subducted Proto-arc[J].Science Advances,2018,4(2):3159.
[14] NAGEL T J,HOFFMANN J E,MÜNKER C.Gene-ration of Eoarchean Tonalite-trondhjemite-granodiori-te Series from Thickened Mafic Arc Crust[J].Geology,2012,40(4):375-378.
[15] HASTIE A R,FITTON J G,BROMILEY G D,et al.The Origin of Earth's First Continents and the Onset of Plate Tectonics[J].Geology,2016,44(10):855-858.
[16] 赵国春,张国伟.大陆的起源[J].地质学报,2021,95(1):1-19.
ZHAO Guo-chun,ZHANG Guo-wei.Origin of Continents[J].Acta Geologica Sinica,2021,95(1):1-19.
[17] LIU D Y,NUTMAN A P,COMPSTON W,et al.Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton[J].Geology,1992,20(4):339-342.
[18] DONG C Y,WAN Y S,XIE H Q,et al.The Mesoarchean Tiejiashan-Gongchangling Potassic Granite in the Anshan-Benxi Area,North China Craton:Origin by Recycling of Paleo- to Eoarchean Crust from U-Pb-Nd-Hf-O Isotopic Studies[J].Lithos,2017,290:116-135.
[19] BAO H,LIU S W,WANG M J,et al.Mesoarchean Geodynamic Regime Evidenced from Diverse Grani-toid Rocks in the Anshan-Benxi Area of the North China Craton[J].Lithos,2020,366/367:105574.
[20] WANG Y F,LI X H,JIN W,et al.Generation and Ma-turation of Mesoarchean Continental Crust in the Anshan Complex,North China Craton[J].Precambrian Research,2020,341:105651.
[21] LIU T,WEI C J.Metamorphic Evolution of Archean Ultrahigh-temperature Mafic Granulites from the Western Margin of Qian'an Gneiss Dome,Eastern Hebei Province,North China Craton:Insights into the Archean Tectonic Regime[J].Precambrian Research,2018,318:170-187.
[22] LIU T,WEI C J,KRÖNER A,et al.Metamorphic P-T Paths for the Archean Caozhuang Supracrustal Sequence,Eastern Hebei Province,North China Craton:Implications for a Sagduction Regime[J].Precambrian Research,2020,340:105346.
[23] ZHAO C,ZHANG J,ZHAO G C,et al.Kinematics and Structural Evolution of the Anziling Dome-and-keel Architecture in East China:Evidence of Neoarchean Vertical Tectonism in the North China Craton[J].Geological Society of America Bulletin,2021,134(7/8):2115-2129.
[24] HUANG B,KUSKY T M,JOHNSON T E,et al.Paired Metamorphism in the Neoarchean:A Record of Accretionary-to-collisional Orogenesis in the North China Craton[J].Earth and Planetary Science Letters,2020,543:116355.
[25] WANG W,LIU S W,SANTOSH M,et al.Neoarch-ean Intra-oceanic Arc System in the Western Liaoning Province:Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton[J].Earth-science Reviews,2015,150:329-364.
[26] GUO B R,LIU S W,CHEN X,et al.K-rich Granitoid Magmatism at the Archean-Proterozoic Transition in Southern Jilin:Insights into the Neoarchean Crustal Evolution of the Northeastern Part of the North China Craton[J].Gondwana Research,2018,58:87-104.
[27] DENG H,KUSKY T,POLAT A,et al.A 2.5 Ga Fore-arc Subduction-accretion Complex in the Dengfeng Granite-greenstone Belt,Southern North China Craton[J].Precambrian Research,2016,275:241-264.
[28] WANG J P,KUSKY T,WANG L,et al.Structural Relationships Along a Neoarchean Arc-continent Collision Zone,North China Craton[J].Geological Society of America Bulletin,2017,129(1/2):59-75.
[29] KUSKY T,POLAT A,WINDLEY B F,et al.Insights into the Tectonic Evolution of the North China Craton Through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents[J].Earth-science Reviews,2016,162:387-432.
[30] ZHAO G C,SUN M,WILDE S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005,136(2):177-202.
[31] ZHAI M G,SANTOSH M.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview[J].Gondwana Research,2011,20(1):6-25.
[32] WANG M J,LIU S W,FU J H.Neoarchean DTTG Gneisses in Southern Liaoning Province and Their Constraints on Crustal Growth and the Nature of the Liao-Ji Belt in the Eastern Block[J].Precambrian Research,2017,303:183-207.
[33] LIU Y S,GAO S,HU Z C,et al.Continental and Ocea-nic Crust Recycling-induced Melt-peridotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Man-tle Xenoliths[J].Journal of Petrology,2010,51(1/2):537-571.
[34] HU Z C,GAO S,LIU Y S,et al.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas[J].Journal of Analytical Atomic Spectrometry,2008,23(8):1093-1101.
[35] LUDWIG K R.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[R].Berkeley:Berkeley Geochronology Center,2003.
[36] WU F Y,YANG Y H,XIE L W,et al.Hf Isotopic Compositions of the Standard Zircons and Baddeleyi-tes Used in U-Pb Geochronology[J].Chemical Geology,2006,234(1/2):105-126.
[37] BLICHERT-TOFT J,ALBARÈDE F.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-crust System[J].Earth and Planetary Science Letters,1997,148(1/2):243-258.
[38] GAO L,LIU S W,WANG M J,et al.Late Neoarchean Volcanic Rocks in the Southern Liaoning Terrane and Their Tectonic Implications for the Formation of the Eastern North China Craton[J].Geoscience Frontiers,2020,11(3):1053-1068.
[39] WANG W,CAWOOD P A,LIU S W,et al.Cyclic Formation and Stabilization of Archean Lithosphere by Accretionary Orogenesis:Constraints from TTG and Potassic Granitoids,North China Craton[J].Tecto-nics,2017,36(9):1724-1742.
[40] LIU F L,WANG F,LIOU J G,et al.Mid-Late Triassic Metamorphic Event for Changhai Meta-sedimentary Rocks from the SE Jiao-Liao-Ji Belt,North China Craton:Evidence from Monazite U-Th-Pb and Muscovite Ar-Ar Dating[J].Journal of Asian Earth Scien-ces,2014,94:205-225.
[41] LIU F L,LIU L S,CAI J,et al.A Widespread Paleoproterozoic Partial Melting Event Within the Jiao-Liao-Ji Belt,North China Craton:Zircon U-Pb Dating of Granitic Leucosomes Within Pelitic Granulites and Its Tectonic Implications[J].Precambrian Research,2019,326:155-173.
[42] LIU J,ZHANG J,LIU Z H,et al.Geochemical and Geochronological Study on the Paleoproterozoic Rock Assemblage of the Xiuyan Region:New Constraints on an Integrated Rift-and-collision Tectonic Process Involving the Evolution of the Jiao-Liao-Ji Belt,North China Craton[J].Precambrian Research,2018,310:179-197.
[43] LIU J,ZHANG J,YIN C Q,et al.Synchronous A-type and Adakitic Granitic Magmatism at ca.2.2 Ga in the Jiao-Liao-Ji Belt,North China Craton:Implications for Rifting Triggered by Lithospheric Delamination[J].Precambrian Research,2020,342:105629.
[44] POLAT A,HOFMANN A W.Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt,West Greenland[J].Precambrian Research,2003,126(3/4):197-218.
[45] BARKER F.Trondhjemite:Definition,Environment and Hypotheses of Origin[J].Developments in Petrology,1979,6:1-12.
[46] RICKWOOD P C.Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J].Lithos,1989,22(4):247-263.
[47] MANIAR P D,PICCOLI P M.Tectonic Discrimination of Granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
[48] MARTIN H,SMITHIES R H,RAPP R P,et al.An Overview of Adakite,Tonalite-trondhjemite-granodio-rite(TTG),and Sanukitoid:Relationships and Some Implications for Crustal Evolution[J].Lithos,2005,79(1/2):1-24.
[49] SUN S S,MCDONOUGH W F.Chemical and Isoto-pic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313-345.
[50] BARKER F,ARTH J G.Generation of Trondhjemi-tic-tonalitic Liquids and Archean Bimodal Trondhjemite-basalt Suites[J].Geology,1976,4(10):596-600.
[51] DAVIDSON J,TURNER S,PLANK T.Dy/Dy*:Variations Arising from Mantle Sources and Petrogenetic Processes[J].Journal of Petrology,2013,54(3):525-537.
[52] KAY W R,KAY M S.安第斯埃达克岩:三种成因模式[J].岩石学报,2002,18(3):303-311.
KAY W R,KAY M S.Andean Adakites:Three Ways to Make Them[J].Acta Petrologica Sinica,2002,18(3):303-311.
[53] GREEN T H.Anatexis of Mafic Crust and High Pre-ssure Cristallisation of Andesite[J].American Society of Mechanical Engineers,1982,23:465-486.
[54] XIONG X L,ADAM J,GREEN T H.Rutile Stability and Rutile/Melt HFSE Partitioning During Partial Melting of Hydrous Basalt:Implications for TTG Ge-nesis[J].Chemical Geology,2005,218(3/4):339-359.
[55] PALIN R M,WHITE R W,GREEN E C R.Partial Melting of Metabasic Rocks and the Generation of Tonalitic-trondhjemitic-granodioritic(TTG)Crust in the Archaean:Constraints from Phase Equilibrium Modelling[J].Precambrian Research,2016,287:73-90.
[56] 吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
WU Fu-yuan,LI Xian-hua,YANG Jin-hui,et al.Discussions on the Petrogenesis of Granites[J].Acta Pet-rologica Sinica,2007,23(6):1217-1238.
[57] BOEHNKE P,WATSON E B,TRAIL D,et al.Zircon Saturation Re-revisited[J].Chemical Geology,2013,351:324-334.
[58] WATSON E B,WARK D A,THOMAS J B.Crystallization Thermometers for Zircon and Rutile[J].Contributions to Mineralogy and Petrology,2006,151(4):413-433.
[59] BÉDARD J H.Stagnant Lids and Mantle Overturns:Implications for Archaean Tectonics,Magmagenesis,Crustal Growth,Mantle Evolution,and the Start of Plate Tectonics[J].Geoscience Frontiers,2018,9(1):19-49.
[60] ZHENG Y F,ZHAO G C.Two Styles of Plate Tectonics in Earth's History[J].Science Bulletin,2020,65(4):329-334.
[61] ZHAO J H,NEBEL O,JOHNSON T E.Formation and Evolution of a Neoproterozoic Continental Magmatic Arc[J].Journal of Petrology,2021,62(8):eg-ab029.
[62] SCHIANO P,MONZIER M,EISSEN J P,et al.Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes[J].Contributions to Mineralogy and Petrology,2010,160(2):297-312.
[63] LAURENT O,MARTIN H,MOYEN J F,et al.The Diversity and Evolution of Late-Archean Granitoids:Evidence for the Onset of “Modern-style” Plate Tectonics Between 3.0 and 2.5 Ga[J].Lithos,2014,205:208-235.
[64] DEFANT M J,DRUMMOND M S.Derivation of So-me Modern Arc Magmas by Melting of Young Subducted Lithosphere[J].Nature,1990,347:662-665.
[65] MARTIN H.Effect of Steeper Archean Geothermal Gradient on Geochemistry of Subduction-zone Magmas[J].Geology,1986,14(9):753-756.
[66] WANG Q,XU J F,JIAN P,et al.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting,Dexing,South China:Implications for the Genesis of Porphyry Copper Mineralization[J].Journal of Petrology,2006,47(1):119-144.
[67] MENG E,LIU F L,CUI Y,et al.Zircon U-Pb and Lu-Hf Isotopic and Whole-rock Geochemical Constraints on the Protolith and Tectonic History of the Changhai Metamorphic Supracrustal Sequence in the Jiao-Liao-Ji Belt,Southeast Liaoning Province,Northeast China[J].Precambrian Research,2013,233:297-315.
[68] MENG E,LIU F L,LIU J H,et al.Zircon U-Pb and Lu-Hf Isotopic Constraints on Archean Crustal Evolution in the Liaonan Complex of Northeast China[J].Lithos,2013,177:164-183.
[69] WU F Y,HAN R H,YANG J H,et al.Initial Constraints on the Timing of Granitic Magmatism in Nor-th Korea Using U-Pb Zircon Geochronology[J].Che-mical Geology,2007,238(3/4):232-248.
[70] WU F Y,YANG J H,WILDE S A,et al.Detrital Zircon U-Pb and Hf Isotopic Constraints on the Crustal Evolution of North Korea[J].Precambrian Research,2007,159(3/4):155-177.
[71] ZHAO G C,CAO L,WILDE S A,et al. Implications Based on the First SHRIMP U-Pb Zircon Dating on Precambrian Granitoid Rocks in North Korea[J].Earth and Planetary Science Letters,2006,251(3/4):365-379.
[72] WANG W,LIU S W,CAWOOD P A,et al.Late Neoarchean Subduction-related Crustal Growth in the Northern Liaoning Region of the North China Craton:Evidence from ~2.55 to 2.50 Ga Granitoid Gneisses[J].Precambrian Research,2016,281:200-223.
[73] BAO H,LIU S W,WAN Y S,et al.Neoarchean Gra-nitoids and Tectonic Regime of Lateral Growth in Northeastern North China Craton[J].Gondwana Research,2022,107:176-200.
[74] PENG H T,KUSKY T,DENG H.Identification of the Neoarchean Jianping Pyroxenite-mélange in the Central Orogenic Belt,North China Craton:A Fore-arc Accretional Assemblage[J].Precambrian Resear-ch,2020,336:105495.

Memo

Memo:
-
Last Update: 2023-10-15