|Table of Contents|

Reaction Pattern of Calcite with Citric Acid/Tartaric Acid in Simulation Experiments(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第06期
Page:
1398-1413
Research Field:
矿产资源综合利用
Publishing date:

Info

Title:
Reaction Pattern of Calcite with Citric Acid/Tartaric Acid in Simulation Experiments
Author(s):
LI Zhen-xuan12 GUI Wei-jun12 SU Chang1 XIANG Yu-bin3 SUN Xiao-wen1 WU Chao-yue4* HUANG Li-dong5 David DECROOCQ6
(1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology/Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 2. Joint International Research Laboratory of Climate and Environment Change(ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 3. School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 4. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; 5. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 6. Département des Sciences de la Terre, Université de Lille, Lille 59650, Nord, France)
Keywords:
calcite citric acid tartaric acid adsorption dissolution complex precipitation solution chemistry
PACS:
X703.1
DOI:
10.19814/j.jese.2023.06028
Abstract:
Citric acid/tartaric acid can cause mineral dissolution and biomineralization of calcite, so the study on reaction pattern between them is of great significance for the assessment of the stability of calcite minerals and the study on the corresponding geochemical effects in organic acid-rich environments. The reaction between calcite and citric acid/tartaric acid and the corresponding solution chemistry change were studied by batch equilibrium method under open system conditions. The results show that ① at the initial concentration of 20 mg?L-1, the reaction removal of citric acid and tartaric acid decreases significantly when the initial pH value increases from 7.7 to 9.7; this is attributed to the electrostatic effect on the surface of calcite and the increasing competition between HCO-3 and CO2-3 in the solution, which inhibit the surface adsorption reaction of the two acids on calcite. ② At the initial pH of 7.7 and 8.3, the reaction of the two acids with an initial concentration of 20 mg?L-1 and calcite reaches equilibrium after 7 h; compared with the blank values, the pH and Ca concentration have little change, which prove that the dominant mechanism of the reaction is surface adsorption. ③ In the concentration range of 0-900 mg?L-1, the reaction removal results of citric acid and tartaric acid at the initial pH of 8.3 could be well fitted by the Langmuir adsorption model, which proves that both of the above removal mechanisms are surface adsorption; at the initial pH of 7.7, the reaction removal results of citric acid still could be fitted by the Langmuir adsorption model, and the removal mechanism is still surface adsorption; while the removal of tartaric acid shows a continuous steep increase, which cannot be fitted by the Langmuir or Freundlich adsorption model, and this is due to the fact that the dominant mechanism of tartaric acid removal by reaction is precipitation reaction. ④ At an initial pH of 8.3, a concentration range of 0-900 mg?L-1 and the temperatures of 5 ℃, 20 ℃, and 35℃, the removal results of both acids could be fitted by the Langmuir adsorption model, and the removal mechanism is still surface adsorption; the increase in the saturation adsorption of citric acid with increasing temperature is greater than that of tartaric acid; meanwhile, citric acid at all three temperatures brings about a greater increase in pH and Ca concentration than that of tartaric acid.

References:

[1] LAZO D E,DYER L G,ALORRO R D.Silicate,Pho-sphate and Carbonate Mineral Dissolution Behaviour in the Presence of Organic Acids:A Review[J].Mine-rals Engineering,2017,100:115-123.
[2] 王建萍,李琼芳,董发勤,等.3 种常见细菌胞外特征有机酸对方解石的溶蚀研究[J].岩石矿物学杂志,2015,34(3):387-392.
WANG Jian-ping,LI Qiong-fang,DONG Fa-qin,et al.A Study of the Dissolution of Calcite by Three Common Bacterial Typical Extracellular Organic Acids[J].Acta Petrologica et Mineralogica,2015,34(3):387-392.
[3] EHRLICH H,KOUTSOUKOS P G,DEMADIS K D,et al.Principles of Demineralization:Modern Strategies for the Isolation of Organic Frameworks:Part Ⅱ.Decalcification[J].Micron,2009,40(2):169-193.
[4] MARTINEZ R E,GARDES E,POKROVSKY O S,et al.Do Photosynthetic Bacteria Have a Protective Mechanism Against Carbonate Precipitation at Their Surfaces?[J].Geochimica et Cosmochimica Acta,2010,74(4):1329-1337.
[5] MENDONCA F G,FILHO E J S,BERTOLI A C,et al.Use of Montmorillonite to Recover Carboxylic Acids from Aqueous Medium[J].Separation and Puri-fication Technology,2019,229:115751.
[6] RHEE S H,TANAKA J.Effect of Citric Acid on the Nucleation of Hydroxyapatite in a Simulated Body Fluid[J].Biomaterials,1999,20(22):2155-2160.
[7] 吴雁雯,张金池,郭晓平,等.应用于矿山修复的高效菌株鉴定与溶岩机制:基于增强回归树分析[J].环境科学,2017,38(1):283-293.
WU Yan-wen,ZHANG Jin-chi,GUO Xiao-ping,et al.Identification of Efficient Strain Applied to Mining Rehabilitation and Its Rock Corrosion Mechanism:Based on Boosted Regression Tree Analysis[J].Environmental Science,2017,38(1):283-293.
[8] CHUN B J,LEE S G,CHOI J I,et al.Adsorption of Carboxylate on Calcium Carbonate(1014)Surface:Molecular Simulation Approach[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,474:9-17.
[9] MARTIN W R,SAYLES F L.CaCO3 Dissolution in Sediments of the Ceara Rise,Western Equatorial Atlantic[J].Geochimica et Cosmochimica Acta,1996,60(2):243-263.
[10] LI Z,HOFMANN A,WOLTHERS M,et al.Reversibility of Cadmium Sorption to Calcite Revisited[J].Journal of Colloid and Interface Science,2012,368(1):434-442.
图11 不同温度下柠檬酸、酒石酸等温吸附的pH值和Ca浓度变化
Fig.11 Changes in pH and Ca Concentration During Isothermal Adsorption of Citric Acid and Tartaric Acid
at Different Temperatures[11] LI Z X,SUN X W,HUANG L D,et al.Phosphate Adsorption and Precipitation on Calcite Under Calco-carbonic Equilibrium Condition[J].Chemosphere,2017,183:419-428.
[12] LI Z X,GUO M X,SUN X W,et al.High Concentration Phosphate Removal by Calcite and Its Subsequent Utilization for Tetracycline Removal[J].Journal of Water Process Engineering,2020,37:101412.
[13] ASHRAF M,ZAFAR Z I,ANSARI T M,et al.Selective Leaching Kinetics of Calcareous Phosphate Rock in Phosphoric Acid[J].Journal of Applied Sciences,2005,5(10):1722-1727.
[14] 高 山,曲希玉,李玉钤,等.有机酸对储层改造作用的模拟实验研究[C]∥成都理工大学.2020油气田勘探与开发国际会议论文集.成都:成都理工大学,2020:2-3.
GAO Shan,QU Xi-yu,LI Yu-qian,et al.Simulation Experiment Study on the Effect of Organic Acidon Reservoir Reconstruction[C]∥Chengdu University of Technology.Proceedings of the International Field Exploration and Development Conference in 2020.Chengdu:Chengdu University of Technology,2020:2-3.
[15] 马倩倩.有机酸对储层矿物的溶蚀作用研究[D].青岛:中国石油大学(华东),2017.
MA Qian-qian.Study on Dissolution of Organic Acids to Reservoir Mineral[D].Qingdao:China University of Petroleum,2017.
[16] REDDY M M,HOCH A R.Calcite Crystal Growth Rate Inhibition by Polycarboxylic Acids[J].Journal of Colloid and Interface Science,2001,235(2):365-370.
[17] MEYER H J.The Influence of Impurities on the Growth Rate of Calcite[J].Journal of Crystal Growth,1984,66(3):639-646.
[18] KITANO Y,HOOD D W.The Influence of Organic Material on the Polymorphic Crystallization of Calcium Carbonate[J].Geochimica et Cosmochimica Acta,1965,29(1):29-41.
[19] AL-KHALDI M H,NASR-El-DIN H A,MEHTA S,et al.Reaction of Citric Acid with Calcite[J].Chemical Engineering Science,2007,62(21):5880-5896.
[20] 高艳芳.柠檬酸钠调控碳酸钙晶体晶型与形貌的研究[D].广州:华南理工大学,2015.
GAO Yan-fang.Control of Crystalline Polymorphs and Morphologies for CaCO3 with Sodium Citrate[D].Guangzhou:South China University of Techno-logy,2015.
[21] UKRAINCZYK M,STELLING J,VUCAK M,et al.Influence of Etidronic Acid and Tartaric Acid on the Growth of Different Calcite Morphologies[J].Journal of Crystal Growth,2013,369:21-31.
[22] PLANK J,BASSIONI G.Adsorption of Carboxylate Anions on a CaCO3 Surface[J].Zeitschrift für Natur-forschung B,2007,62(10):1277-1284.
[23] KULP E A,SWITZER J A.Electrochemical Biomine-ralization:The Deposition of Calcite with Chiral Morphologies[J].Journal of the American Chemical Socie-ty,2007,129(49):15120-15121.
[24] PHILLIPS B L,LEE Y J,REEDER R J.Organic Coprecipitates with Calcite:NMR Spectroscopic Eviden-ce[J].Environmental Science & Technology,2005,39(12):4533-4539.
[25] 王晓蓉.环境化学[M].南京:南京大学出版社,1993.
WANG Xiao-rong.Environmental Chemistry[M].Nanjing:Nanjing University Press,1993.
[26] 闫志为,刘辉利,张志卫.温度及CO2对方解石、白云石溶解度影响特征分析[J].中国岩溶,2009,28(1):7-10.
YAN Zhi-wei,LIU Hui-li,ZHANG Zhi-wei.Influen-ces of Temperature and ρCO2 on the Solubility of Calcite and Dolomite[J].Carsologica Sinica,2009,28(1):7-10.
[27] 钱 会,张益谦.开放系统中CaCO3的溶解与沉淀对水溶液的成分及其性质的影响[J].中国岩溶,1995,14(4):352-361.
QIAN Hui,ZHANG Yi-qian.The Effects of Dissolution and Precipitation of CaCO3 on the Compositions and Properties of Water in an Open System[J].Carsologica Sinica,1995,14(4):352-361.
[28] 钱 会,李雨新.封闭系统中CaCO3在天然水中溶解或沉淀的水化学后果[J].西安工程学院学报,1994,16(2):54-60.
QIAN Hui,LI Yu-xin.On a Water-chemical Consequences Caused by the Dissolution or Precipitation of CaCO3 in a Closed Systems of Natural Water[J].Journal of Xi'an College of Geology,1994,16(2):54-60.
[29] CAPPELLEN V P,CHARLET L,STUMM W,et al.A Surface Complexation Model of the Carbonate Mi-neral-aqueous Solution Interface[J].Geochimica et Cosmochimica Acta,1993,57(15):3505-3518.
[30] 李振炫,黄利东,徐 佳,等.开放系统中碳酸盐矿物(方解石)对四环素的吸附[J].环境科学与技术,2015,38(12):215-221.
LI Zhen-xuan,HUANG Li-dong,XU Jia,et al.Sorption of Tetracycline onto Carbonate Mineral(Calcite)in Open-system[J].Environmental Science & Technology,2015,38(12):215-221.
[31] MICHARD G.Chimie des Eaux Naturelles[M].Pairs:Publisud,2002.
[32] 姚晓芹,马文奇,楚建周.磷酸对石灰性土壤pH及微量元素有效性的影响[J].中国土壤肥料,2005(2):14-16,20.
YAO Xiao-qin,MA Wen-qi,CHU Jian-zhou.Effect of Phosphoric Acid on pH and Micronutrient Availability in Calcareous Soil[J].Soil and Fertilizer Sciences in China,2005(2):14-16,20.
[33] 殷允相.对石灰性土壤pH测定中一些问题的探讨[J].土壤通报,1979(3):15-17.
YIN Yun-xiang.Discussion of Some Problems in pH Determination of Calcareous Soils[J].Chinese Journal of Soil Science,1979(3):15-17.
[34] 沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29(1):80-86.
SHEN Ren-fang,JIANG Bo-fan.Distribution and Availability of Various Forms of Inorganic-P in Calcareous Soils[J].Acta Pedologica Sinica,1992,29(1):80-86.
[35] GUSTAFSSON J P.Visual MINTEQ ver.3.1[EB/OL].(2013-12-21)[2023-06-15].http:∥www2.lwr.kth.se/English/Oursoftware/vminteq/download.html.
[36] GEFFROY C,FOISSY A,PERSELLO J,et al.Surfa-ce Complexation of Calcite by Carboxylates in Water[J].Journal of Colloid and Interface Science,1999,211(1):45-53.
[37] 刘永红,马舒威,岳霞丽,等.土壤环境中的小分子有机酸及其环境效应[J].华中农业大学学报,2014,33(2):133-138.
LIU Yong-hong,MA Shu-wei,YUE Xia-li,et al.Low Molecular Weight Organic Acids in Soils and Its Environmental Effects[J].Journal of Huazhong Agricultural University,2014,33(2):133-138.
[38] MORADI N,SADAGHIANI M R,SEPEHR E,et al.Effects of Low-molecular-weight Organic Acids on Phosphorus Sorption Characteristics in Some Calcareous Soils[J].Turkish Journal of Agriculture and Fo-restry,2012,36(4):459-468.
[39] WANG X X,LI Q M,DING J H,et al.An Improved Method for the Extraction of Low Molecular Weight Organic Acids in Variable Charge Soils[J].Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry,2007,23(5):539-543.
[40] 吴大清,彭金莲,刁桂仪,等.沉积CaCO3与金属离子界面反应动力学研究[J].地球化学,2000,29(1):56-61.
WU Da-qing,PENG Jin-lian,DIAO Gui-yi,et al.Kinetic Study of the Interface Reactions Between Metal Ions and Sediment CaCO3[J].Geochimica,2000,29(1):56-61.
[41] LI Z X,XIAO J T,HUANG L D,et al.Comparative Study of Carboxylic Acid Adsorption on Calcite:L-malic Acid,D-malic Acid and Succinic Acid[J].Carbonates and Evaporites,2019,34(3):1131-1139.
[42] 李振炫,黄利东,陈艳芳,等.开放系统下丙二酸在方解石上的吸附[J].环境化学,2015,34(10):1940-1947.
LI Zhen-xuan,HUANG Li-dong,CHEN Yan-fang,et al.Sorption of Malonate onto Calcite in Open-system[J].Environmental Chemistry,2015,34(10):1940-1947.
[43] 李振炫,黄利东,陈艳芳,等.开放系统下方解石对邻苯二甲酸的吸附[J].环境科学,2015,36(7):2547-2553.
LI Zhen-xuan,HUANG Li-dong,CHEN Yan-fang,et al.Sorption of Ophthalate onto Calcite in Open-sys-tem[J].Environmental Science,2015,36(7):2547-2553.
[44] 李鹏飞.低分子量有机酸对珊瑚砂风化溶解促进作用的研究[D].兰州:兰州交通大学,2019.
LI Peng-fei.Study on the Promotion of Weathering and Dissolution of Coral Sand by Low Molecular Wei-ght Organic Acids[D].Lanzhou:Lanzhou Jiaotong University,2019.
[45] KAN A T,FU G,TOMSON M B.Adsorption and Precipitation of an Aminoalkylphosphonate onto Calcite[J].Journal of Colloid and Interface Science,2005,281(2):275-284.
[46] 喻艳红,李清曼,张桃林,等.红壤中低分子量有机酸的吸附特征[J].土壤通报,2011,42(1):33-37.
YU Yan-hong,LI Qing-man,ZHANG Tao-lin,et al.Adsorption Characteristics of Low Molecular Weight Organic Acids in Red Soil[J].Chinese Journal of Soil Science,2011,42(1):33-37.
[47] MÖLLER P,SASTRI C S.Estimation of the Number of Surface Layers of Calcite Involved in Ca-45 Ca Isotopic Exchange with Solution[J].Zeitschrift für Phy-sikalische Chemie,1974,89(1/2/3/4):80-87.
[48] 陆文龙,曹一平,张福锁.低分子量有机酸对不同磷酸盐的活化作用[J].华北农学报,2001,16(1):99-104.
LU Wen-long,CAO Yi-ping,ZHANG Fu-suo.The Effect of Low-molecular-weight Organic Acids on Phosphorus Release from Different Phosphates[J].Acta Agriculturae Boreali-Sinica,2001(1):99-104.
[49] 刘再华,DREYBRODT W,韩 军,等.CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1-14.
LIU Zai-hua,DREYBRODT W,HAN Jun,et al.Equilibrium Chemistry of the CaCO3-CO2-H2O System and Discussions[J].Carsologica Sinica,2005,24(1):1-14.
[50] PLUMMER L N,BUSENBERG E.The Solubilities of Calcite,Aragonite and Vaterite in CO2-H2O Solutions Between 0 and 90 ℃,and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O[J].Geo-chimica et Cosmochimica Acta,1982,46(6):1011-1040.
[51] USLU H,INCI I.Adsorption Equilibria of L-(+)-tartaric Acid onto Alumina[J].Journal of Chemi-cal & Engineering Data,2009,54(7):1997-2001.
[52] 张建珍,樊晓红,薛丽华.EDTA络合滴定法连续测定铁矿石中钙和镁[J].冶金分析,2011,31(8):74-78.
ZHANG Jian-zhen,FAN Xiao-hong,XUE Li-hua.Continuous Determination of Calcium and Magnesium in Iron Ore by EDTA Complexometric Titration[J].Metallurgical Analysis,2011,31(8):74-78.
[53] 靳玉正.比较不同的碳酸盐在葡萄酒中的应用[J].葡萄栽培与酿酒,1997(1):38-39.
JIN Yu-zheng.Comparison of Different Carbonates in Wine[J].Sino-overseas Grapevine & Wine,1997(1):38-39.
[54] 李海燕,汪东风,于丽娜,等.球状壳聚糖树脂对柠檬酸的吸附行为[J].过程工程学报,2009,9(1):12-17.
LI Hai-yan,WANG Dong-feng,YU Li-na,et al.Adsorption Behavior of Citric Acid on Resin of Chitosan Microspheres[J].The Chinese Journal of Process Engineering,2009,9(1):12-17.

Memo

Memo:
-
Last Update: 2023-12-01