|Table of Contents|

Spatial DifferentiationCharacteristicsof Carbon Emission and Its InfluencingFactors inHunan Province, China at theCounty Scale(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2024年第02期
Page:
196-210
Research Field:
环境与可持续发展
Publishing date:

Info

Title:
Spatial DifferentiationCharacteristicsof Carbon Emission and Its InfluencingFactors inHunan Province, China at theCounty Scale
Author(s):
ZHOU Hang ZHAO Xian-chao*
(College of Urban and Environmental Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China)
Keywords:
carbon emission spatial differentiation influencing factor county scale nightlight data geodetector GTWR model Hunan
PACS:
F301.24; X24
DOI:
10.19814/j.jese.2023.12007
Abstract:
Carrying outtheresearch on the spatial heterogeneity of carbon emissions and influencing factors at the countyscale is an important link to help achieve the goal of “double carbon” for counties and districts and other multi-scale regions. Using 122 counties in Hunan province as the research object, the carbon emissions of each county in Hunan province were estimated throughnightlightdata, the exploratory spatial data analysis methods were used to depict the spatial and temporal patterns of carbon emissions in the counties, and the geodetector and geographicallyand temporallyweighted regression(GTWR)model were used to quantitatively investigate the spatial differentiation ofcarbon emissionsin the countiesand the factors influencing in terms of policy, economy, energy, society, and industry. The results show that ① from 2012 to 2020, the overall trend of carbon emissionin the countiesof Hunan province is weakening and the difference is more obvious, the spatial pattern distribution is high in the north and low in the south, and the gap between the east and west is relatively small; ② the Moran's I value decreases year by year, the spatial clustering feature is more significant, and the overall positive correlation trend is shown; ③ the financial expenditures, the size of population, the urbanization rate, energy carbon intensity and agricultural development level are the dominant factors affecting carbon emissionsin the counties; ④ based on GTWR model, there are significant spatial and temporal differences in the impact of the same indicator on carbon emissions in different counties.

References:

[1] CHO S H,CHAE C U.A Study on Life Cycle CO2 Emissions of Low-carbon Building in South Korea[J].Sustainability,2016,8(6):579.
[2]王 瑛,何艳芬.中国省域二氧化碳排放的时空格局及影响因素[J].世界地理研究,2020,29(3):512-522.
WANG Ying,HE Yan-fen. Spatiotemporal Dynamics and Influencing Factors of Provincial Carbon Emissions in China[J].World Regional Studies,2020,29(3):512-522.
[3]郑博福,梁 涵,万 炜,等.江西省县域农业碳排放时空格局及影响因素分析[J].农业工程学报,2022,38(23):70-80.
ZHENG Bo-fu,LIANG Han,WAN Wei,et al.Spatial-temporal Pattern and Influencing Factors of Agricultural Carbon Emissions at the County Level in Jiangxi Province of China[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(23):70-80.
[4]祁慧博,沈欣懿,龙 飞,等.浙江省县域碳排放的时空格局与影响因素研究[J].长江流域资源与环境,2023,32(4):821-831.
QI Hui-bo,SHEN Xin-yi,LONG Fei,et al.Study on Spatial-temporal Pattern and Influencing Factors of County Carbon Emissions in Zhejiang Province[J].Resources and Environment in the Yangtze Basin,2023,32(4):821-831.
[5]刘志华,徐军委,张彩虹.科技创新、产业结构升级与碳排放效率:基于省际面板数据的PVAR分析[J].自然资源学报,2022,37(2):508-520.
LIU Zhi-hua,XU Jun-wei,ZHANG Cai-hong.Technological Innovation,Industrial Structure Upgrading and Carbon Emissions Efficiency:An Analysis Based on PVAR Model of Panel Data at Provincial Level[J].Journal of Natural Resources,2022,37(2):508-520.
[6]王鑫静,程 钰.城镇化对碳排放效率的影响机制研究:基于全球118个国家面板数据的实证分析[J].世界地理研究,2020,29(3):503-511.
WANG Xin-jing,CHENG Yu.Research on the Influencing Mechanism of Urbanization on Carbon Emission Efficiency:Based on an Empirical Study of 118 Countries[J].World Regional Studies,2020,29(3):503-511.
[7]王少剑,莫惠斌,方创琳.珠江三角洲城市群城市碳排放动态模拟与碳达峰[J].科学通报,2022,67(7):670-684.
WANG Shao-jian,MO Hui-bin,FANG Chuang-lin.Carbon Emissions Dynamic Simulation and its Peak of Cities in the Pearl River Delta Urban Agglomeration[J].Chinese Science Bulletin,2022,67(7):670-684.
[8]杨玉文,吴爱玲,朱洋洋.碳排放驱动因素分解及动态模拟:以内蒙古自治区为例[J].统计与决策,2020,36(12):76-80.
YANG Yu-wen,WU Ai-ling,ZHU Yang-yang.Decomposition and Dynamic Modelling of Carbon Emission Drivers:A Case Study of Inner Mongolia Autonomous Region[J].Statistics & Decision,2020,36(12):76-80.
[9]KONG H J,SHI L F,DA D,et al.Simulation of China's Carbon Emission Based on Influencing Factors[J].Energies,2022,15(9):3272.
[10]王少剑,田莎莎,蔡清楠,等.产业转移背景下广东省工业碳排放的驱动因素及碳转移分析[J].地理研究,2021,40(9):2606-2622.
WANG Shao-jian,TIAN Sha-sha,CAI Qing-nan,et al.Driving Factors and Carbon Transfer of Industrial Carbon Emissions in Guangdong Province Under the Background of Industrial Transfer[J].Geographical Research,2021,40(9):2606-2622.
[11]李 键,毛德华,蒋子良,等.长株潭城市群土地利用碳排放因素分解及脱钩效应研究[J].生态经济,2019,35(8):28-34,66.
LI Jian,MAO De-hua,JIANG Zi-liang,et al.Research on Factors Decomposition and Decoupling Effects of Land Use Carbon Emissions in Chang-Zhu-Tan Urban Agglomeration[J].Ecological Economy,2019,35(8):28-34,66.
[12]王敏彤,魏 伟,颉斌斌,等.多尺度视角下重要生态功能区碳源/汇时空演变特征:以黄河流域为例[J].环境科学学报,2024,44(2):477-488.
WANG Min-tong,WEI Wei,JIE Bin-bin,et al.Spatio-temporal Evolution Characteristics of Carbon Sources/Sinks in Important Ecological Function Areas:A Case Study in the Yellow River Basin[J].Acta Scientiae Circumstantiae,2024,44(2):477-488.
[13]牛亚文,赵先超,胡艺觉.基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J].环境科学学报,2021,41(9):3847-3856.
NIU Ya-wen,ZHAO Xian-chao,HU Yi-jue.Spatial Variation of Carbon Emissions from County Land Use in Chang-Zhu-Tan Area Based on NPP-VIIRS Night Light[J].Acta Scientiae Circumstantiae,2021,41(9):3847-3856.
[14]王少剑,谢紫寒,王泽宏.中国县域碳排放的时空演变及影响因素[J].地理学报,2021,76(12):3103-3118.
WANG Shao-jian,XIE Zi-han,WANG Ze-hong.The Spatiotemporal Pattern Evolution and Influencing Factors of CO2 Emissions at the County Level of China[J].Acta Geographica Sinica,2021,76(12):3103-3118.
[15]刘春英,檀斯园,王骏博,等.长江中下游典型区域土地利用碳排放风险:以江西省九江市为例[J].水土保持通报,2023,43(1):341-349.
LIU Chun-ying,TAN Si-yuan,WANG Jun-bo,et al.Carbon Emission Risk from Land Use in Typical Regions of Middle and Lower Yangtze River:A Case Study at Jiujiang City,Jiangxi Province[J].Bulletin of Soil and Water Conservation,2023,43(1):341-349.
[16]黄汉志,贾俊松,张振旭.江西县域土地利用变化碳排放时空演变及其影响因素[J].生态学报,2023,43(20):8390-8403.
HUANG Han-zhi,JIA Jun-song,ZHANG Zhen-xu.Spatiotemporal Pattern Evolution and Influencing Factors of Land-use Carbon Emissions in Counties,Jiangxi Province[J].Acta Ecologica Sinica,2023,43(20):8390-8403.
[17]WANG B,YU M X,ZHU Y C,et al.Unveiling the Driving Factors of Carbon Emissions from Industrial Resource Allocation in China:A Spatial Econometric Perspective[J].Energy Policy,2021,158:112557.
[18]于 博,杨 旭,吴相利.哈长城市群县域碳排放空间溢出效应及影响因素研究:基于NPP-VIIRS夜间灯光数据的实证[J].环境科学学报,2020,40(2):697-706.
YU Bo,YANG Xu,WU Xiang-li.Study on Spatial Spillover Effects and Influencing Factors of Carbon Emissions in County Areas of Ha-Chang City Group:Evidence from NPP-VIIRS Nightlight Data[J].Acta Scientiae Circumstantiae,2020,40(2):697-706.
[19]牛鸿蕾.中国城镇化碳排放效应的实证检验[J].统计与决策,2019,35(6):138-142.
NIU Hong-lei.An Empirical Test of the Carbon Emission Effect of Urbanization in China[J].Statistics & Decision,2019,35(6):138-142.
[20]刘元欣,贺 铄,江雅婧,等.中国四大城市群碳排放驱动因素时空分解研究[J].气候变化研究进展,2024,20(2):231-241.
LIU Yuan-xin,HE Shuo,JIANG Ya-jing,et al.Spatial-temporal Decomposition of Carbon Emissions in China's Four Major Urban Agglomerations[J].Climate Change Research,2024,20(2):231-241.
[21]王素凤,洪剑涛,李化夫.中国城市能源消费碳排放影响因素的时空异质性[J].世界地理研究,2023,http:∥kns.cnki.net/kcms/detail/31.1626.P.20230412.0854.002.html.
WANG Su-feng,HONG Jian-tao,LI Hua-fu.Spatial and Temporal Heterogeneity of Factors Influencing Carbon Emissions from Energy Consumption in Chinese Cities[J].World Regional Studies,2023,http:∥kns.cnki.net/kcms/detail/31.1626.P.20230412.0854.002.html.
[22]张华明,元鹏飞,朱治双.中国城市人口规模、产业集聚与碳排放[J].中国环境科学,2021,41(5):2459-2470.
ZHANG Hua-ming,YUAN Peng-fei,ZHU Zhi-shuang.City Population Size,Industrial Agglomeration and CO2 Emission in Chinese Prefectures[J].China Environmental Science,2021,41(5):2459-2470.
[23]郭建峰,欧筱彤.高质量发展视角下碳排放权交易政策对城市生态福利绩效的影响[J].地球科学与环境学报,2023,45(2):373-384.
GUO Jian-feng,OU Xiao-tong.Impact of Carbon Emission Trading Policy on Urban Ecological Well-being Performance from the Perspective of High-quality Development[J].Journal of Earth Sciences and Environment,2023,45(2):373-384.
[24]苑韶峰,唐奕钰.低碳视角下长江经济带土地利用碳排放的空间分异[J].经济地理,2019,39(2):190-198.
YUAN Shao-feng,TANG Yi-yu.Spatial Differentiation of Land Use Carbon Emission in the Yangtze River Economic Belt Based on Low Carbon Perspective[J].Economic Geography,2019,39(2):190-198.
[25]方 林,李灿锋,李浩杰,等.长江经济带土地利用碳排放时空效应及驱动力[J].草业科学,2022,39(12):2539-2553.
FANG Lin,LI Can-feng,LI Hao-jie,et al.Analysis of the Spatiotemporal Effects and Driving Factors of Land Use Carbon Emissions in the Yangtze River Economic Belt[J].Pratacultural Science,2022,39(12):2539-2553.
[26]IPCC.Climate Change 2007:The AR4 Synthesis Report[M].Geneva:IPCC,2007.
[27]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
WANG Jin-feng,XU Cheng-dong.Geodetector:Principle and Prospective[J].Acta Geographica Sinica,2017,72(1):116-134.
[28]罗逸臻,黄远程,王 涛.关中平原城市群生态环境质量时空变化特征及其驱动力[J].地球科学与环境学报,2023,45(6):1316-1329.
LUO Yi-zhen,HUANG Yuan-cheng,WANG Tao.Spatial-temporal Variation Characteristics of Ecological Environment Quality and Their Driving Forces in Guanzhong Plain Urban Agglomeration,China[J].Journal of Earth Sciences and Environment,2023,45(6):1316-1329.
[29]毛智慧,黎丽莉,程 露,等.广东省植被叶面积指数时空变化特征及其影响因素[J].地球科学与环境学报,2023,45(4):907-919.
MAO Zhi-hui,LI Li-li,CHENG Lu,et al.Spatio-temporal Variation of Vegetation Leaf Area Index and Its Influencing Factors in Guangdong Province,China[J].Journal of Earth Sciences and Environment,2023,45(4):907-919.
[30]卫新东,关嘉敏,冯小龙,等.秦岭陕西段耕地质量时空变化特征及其驱动力[J].地球科学与环境学报,2023,45(2):350-361.
WEI Xin-dong,GUAN Jia-min,FENG Xiao-long,et al.Spatial-temporal Change Characteristics of Cultivated Land Quality in Shaanxi Section of Qinling,China and Their Driving Forces[J].Journal of Earth Sciences and Environment,2023,45(2):350-361.
[31]HUANG B,WU B,BARRY M.Geographically and Temporally Weighted Regression for Modeling Spatio-temporal Variation in House Prices[J].International Journal of Geographical Information Science,2010,24(3):383-401.
[32]赵 哲,谭建立.中国财政支出对碳排放影响的双重效应分析[J].云南财经大学学报,2020,36(5):24-36.
ZHAO Zhe,TAN Jian-li.The Dual Effect of Fiscal Expenditure on Carbon Emissions in China[J].Journal of YunnanUniversityFinance andEconomics,2020,36(5):24-36.
[33]赵玉焕,钱之凌,徐 鑫.碳达峰和碳中和背景下中国产业结构升级对碳排放的影响研究[J].经济问题探索,2022(3):87-105.
ZHAO Yu-huan,QIAN Zhi-ling,XU Xin.Study on the Impact of Industrial Structure Upgrading on Carbon Emissions in China in the Context of Carbon Peaking and Carbon Neutrality[J].Inquiry into Economic Issues,2022(3):87-105.
[34]高国力,文 扬,王 丽,等.基于碳排放影响因素的城市群碳达峰研究[J].经济管理,2023,45(2):39-58.
GAO Guo-li,WEN Yang,WANG Li,et al.Study on Carbon Peak of Urban Clusters Based on Analysis of Influencing Factors of Carbon Emissions[J].Business Management Journal,2023,45(2):39-58.

Memo

Memo:
-
Last Update: 2024-04-10