|Table of Contents|

Mechanical Properties of Creep-type Landslide Slip Zone Based on Ring Shear Test—A Case Study of Suo'ertou Landslide in Zhouqu Area of Gansu, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2024年第05期
Page:
677-688
Research Field:
工程地质与环境灾害
Publishing date:

Info

Title:
Mechanical Properties of Creep-type Landslide Slip Zone Based on Ring Shear Test—A Case Study of Suo'ertou Landslide in Zhouqu Area of Gansu, China
Author(s):
LU Chang-ming1 WANG Zuo-peng1* WU Liang2 QUAN Ye-zi1 NING Rui-hao1 GAN Liang-cheng1
(1. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China; 2. Qinghai Istitute of Geo-environment Monitoring, Xining 810008, Qinghai, China)
Keywords:
landslide slip zone ring shear test water content gravel content shear rate residual strength Gansu
PACS:
P642.22
DOI:
10.19814/j.jese.2024.03052
Abstract:
The deformation of creep-type landslides is closely related to the mechanical properties of the slip zone. Investigating the variations in the mechanical properties of the slip zone under different water contents and gravel contents is crucial for understanding the deformation mechanisms of creep-type landslides. The slip soil of Suo'ertou landslide in Zhouqu area of Gansu was focused on. Through ring shear tests, the variations in the mechanical properties of the slip zone under different water contents(15%, 19% and 22%), gravel contents(0%, 5% and 15%), and shear rates(0.5, 3.0 and 30.0 mm·min-1)were explored. The results show that ① under long-distance shearing, the shear strength of the slip zone decreases with the increase in water content, while the displacement required to reach peak strength of the slip zone increases with the increase in water content; simultaneously, the residual cohesion of the slip zone significantly decreases with the increase in water content; ② the shear strength of the slip zone increases with the increase in gravel content; ③ as the shear rate increases, the shear strength of the slip zone gradually decreases, and the internal friction angle also shows a significant decreasing trend. Combining regional background information, it is suggested that the creep rate of Suo'ertou landslide in Zhouqu area of Gansu is related to seasonal rainfall and fault activities.

References:

[1] 张岩岩,文海家,麻超超,等.基于多源数据的蔡家坝特大型滑坡成因机制研究及稳定性评价[J].岩石力学与工程学报,2018,37(9):2048-2063.
ZHANG Yan-yan,WEN Hai-jia,MA Chao-chao,et al.Failure Mechanism and Stability Analysis of Huge Landslide of Caijiaba Based on Multi-source Data[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(9):2048-2063.
[2] 王玢佳,王 涛,孙进忠,等.基于环剪试验的湟水河流域大型泥岩滑坡滑带剪切特征初探[J].工程地质学报,2017,25(1):123-131.
WANG Fen-jia,WANG Tao,SUN Jin-zhong,et al.Shearing Characteristic of Sliding Zone Soil from Ring Shear Tests for Large Scale Mudstone Landslides in Huangshui River Basin[J].Journal of Engineering Geology,2017,25(1):123-131.
[3] 孟振江,曹一迪,康尘云,等.降雨促发黄土滑坡的启动机制模拟[J].地球科学与环境学报,2023,45(3):474-484.
MENG Zhen-jiang,CAO Yi-di,KANG Chen-yun,et al.Simulation of the Initiation Mechanism of Loess Landslide Promoted by Rainfall[J].Journal of Earth Sciences and Environment,2023,45(3):474-484.
[4] 赵 甫,丁 栋.断裂构造对滑坡的水力补给类型及作用机理分析[J].工程地质学报,2021,29(3):798-806.
ZHAO Fu,DING Dong.Analysis of the Type and Mechanism of Water Supply from Fault Structure on Landslide[J].Journal of Engineering Geology,2021,29(3):798-806.
[5] 张永双,郭长宝,姚 鑫,等.青藏高原东缘活动断裂地质灾害效应研究[J].地球学报,2016,37(3):277-286.
ZHANG Yong-shuang,GUO Chang-bao,YAO Xin,et al.Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau[J].Acta Geoscientica Sinica,2016,37(3):277-286.
[6] 黄观文,王家兴,杜 源,等.顾及降雨及库水位因素的滑坡时滞分析与预测:以三峡库区新铺滑坡为例[J].地球科学与环境学报,2021,43(3):621-631.
HUANG Guan-wen,WANG Jia-xing,DU Yuan,et al.Time-delay Analysis and Prediction of Landslide Considering Precipitation and Reservoir Water Level:A Case Study of Xinpu Landslide in Three Gorges Re-servoir Area,China[J].Journal of Earth Sciences and Environment,2021,43(3):621-631.
[7] 杨为民,黄 晓,张永双,等.甘肃南部坪定—化马断裂带滑坡变形特征及其防治[J].地质通报,2013,32(12):1925-1935.
YANG Wei-min,HUANG Xiao,ZHANG Yong-shuang,et al.The Deformation Characteristics of the Landslide Along Pingding-Huama Active Fault Zone and Its Prevention and Control[J].Geological Bulletin of China,2013,32(12):1925-1935.
[8] 任三绍,张永双,徐能雄,等.含砾滑带土复活启动强度研究[J].岩土力学,2021,42(3):863-873.
REN San-shao,ZHANG Yong-shuang,XU Neng-xiong,et al.Mobilized Strength of Sliding Zone Soils with Gravels in Reactivated Landslides[J].Rock and Soil Mechanics,2021,42(3):863-873.
[9] 蒋秀姿,文宝萍,张咪咪,等.不同状态下黏性土剪切蠕变行为对比分析[J].工程地质学报,2018,26(3):639-646.
JIANG Xiu-zi,WEN Bao-ping,ZHANG Mi-mi,et al.Comparative Analysis of Creep Shear Behavior of Cohesive Soil Under Different States[J].Journal of Engineering Geology,2018,26(3):639-646.
[10] LAN H X,LIU X,LI L P,et al.Remote Sensing Precursors Analysis for Giant Landslides[J].Remote Sensing,2022,14(17):4399.
[11] LAN H X,ZHANG Y X,MACCIOTTA R,et al.The Role of Discontinuities in the Susceptibility,Development,and Runout of Rock Avalanches:A Review[J].Landslides,2022,19(6):1391-1404.
[12] 祝艳波,韩宇涛,苗帅升,等.黄土-三趾马红土滑坡滑带土剪切力学特性影响因素[J].地球科学与环境学报,2021,43(4):744-759.
ZHU Yan-bo,HAN Yu-tao,MIAO Shuai-sheng,et al.Influencing Factors on the Shear Strength of Sliding Zone of Loess-Hipparion Red Clay Landslide[J].Journal of Earth Sciences and Environment,2021,43(4):744-759.
[13] 张 玉,徐卫亚,李德亮.大型滑坡演化机制及滑带剪切特性试验研究[J].岩石力学与工程学报,2013,32(增1):2606-2616.
ZHANG Yu,XU Wei-ya,LI De-liang.Experimental Study of Evolution Mechanism and Shear Characteristics of Slip Zone of Large-scale Landslide[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(S1):2606-2616.
[14] 蒋秀姿,文宝萍.缓慢复活型滑坡滑带土的蠕变性质与特征强度试验研究[J].岩土力学,2015,36(2):495-501.
JIANG Xiu-zi,WEN Bao-ping.Creep Behavior of Slip Zone of Reactivated Slow-moving Landslide and Its Characteristic Strength[J].Rock and Soil Mechanics,2015,36(2):495-501.
[15] 刘小丽,邓建辉,李广涛,等.滑带土强度特性研究现状[J].岩土力学,2004,25(11):1849-1854.
LIU Xiao-li,DENG Jian-hui,LI Guang-tao,et al.She-ar Strength Properties of Slip Soils of Landslides:An Overview[J].Rock and Soil Mechanics,2004,25(11):1849-1854.
[16] 洪 勇,孙 涛,栾茂田,等.土工环剪仪的开发及其应用研究现状[J].岩土力学,2009,30(3):628-634.
HONG Yong,SUN Tao,LUAN Mao-tian,et al.De-velopment and Application of Geotechnical Ring Shear Apparatus:An Overview[J].Rock and Soil Mecha-nics,2009,30(3):628-634.
[17] 蒋 树,王义锋,唐 川,等.基于环剪试验的复活型低速滑坡活动机理[J].地质科技情报,2019,38(2):256-261.
JIANG Shu,WANG Yi-feng,TANG Chuan,et al.Movement Mechanism of a Reactivated Slow-moving Landslide Based on Ring Shear Test[J].Geological Science and Technology Information,2019,38(2):256-261.
[18] KYOJI S,HIROSHI F,WANG G H,et al.Undrained Dynamic-loading Ring-shear Apparatus and Its Application to Landslide Dynamics[J].Landslides,2004,1(1):7-19.
[19] 王 顺,项 伟,崔德山,等.不同环剪方式下滑带土残余强度试验研究[J].岩土力学,2012,33(10):2967-2972.
WANG Shun,XIANG Wei,CUI De-shan,et al.Study of Residual Strength of Slide Zone Soil Under Diff-erent Ring-shear Tests[J].Rock and Soil Mechanics,2012,33(10):2967-2972.
[20] MARTEL S J.Mechanics of Landslide Initiation as a Shear Fracture Phenomenon[J].Marine Geology,2004,203(3/4):319-339.
[21] HU W,ZHENG Y S,MCSAVENEY M,et al.Evolution of the Strain Localization and Shear-zone Internal Structure in the Granular Material:Insights from Ring-shear Experiments[J].Engineering Geology,2023,325:107283.
[22] 宋丙辉,谌文武,吴玮江,等.锁儿头滑坡滑带土不同含水率大剪试验研究[J].岩土力学,2012,33(增2):77-84.
SONG Bing-hui,CHEN Wen-wu,WU Wei-jiang,et al.Experimental Study of Large Scale Direct Shear Test of Sliding Zone Soil of Suoertou Landslide with Different Moisture Contents[J].Rock and Soil Mecha-nics,2012,33(S2):77-84.
[23] 戚志宇,李志清.黄土蠕变特性研究进展[J].地球科学与环境学报,2023,45(3):485-510.
QI Zhi-yu,LI Zhi-qing.Review on Creep Properties of Loess[J].Journal of Earth Sciences and Environment,2023,45(3):485-510.
[24] 吴岱諠,曹世超,吴 琦,等.蠕滑滑坡滑带土强度及其参数特性试验研究[J].人民黄河,2019,41(7):143-147.
WU Dai-xuan,CAO Shi-chao,WU Qi,et al.Experimental Study on Strength and Parameter Characteristics of Slip Zone Soil of Creep Landslide[J].Yellow River,2019,41(7):143-147.
[25] 任三绍.含砾滑带土强度演变机制与古滑坡复活动力学过程研究[D].北京:中国地质大学,2022.
REN San-shao.Strength Evolution Mechanism of Gravelly Sliding Zone Soil and Dynamic Process of Ancient Landslide Reactivation[D].Beijing:China University of Geosciences,2022.
[26] WEN B P,JIANG X Z.Effect of Gravel Content on Creep Behavior of Clayey Soil at Residual State:Implication for Its Role in Slow-moving Landslides [J].Landslides,2017,14(2):559-576.
[27] 李小伟,吴益平,张 荣,等.滑带土抗剪强度特性的环剪试验研究[J].科学技术与工程,2014,14(27):273-276.
LI Xiao-wei,WU Yi-ping,ZHANG Rong,et al.Research on Shear Strength Behavior of Slide Zone Soil in Ring Shear Test[J].Science Technology and Engineering,2014,14(27):273-276.
[28] TIKA T E,HUTCHINSON J N.Ring Shear Tests on Soil from the Vaiont Landslide Slip Surface[J].Geo-technique,1999:49(1):59-74.
[29] MA J Q,ZHAO X J,LI S B,et al.Effects of High Shearing Rates on the Shear Behavior of Saturated Loess Using Ring Shear Tests[J].Geofluids,2021,DOI:10.1155/2021/6527788.
[30] GB/T 50123—2019,土工试验方法标准[S].
GB/T 50123—2019,Standard for Reotechnical Testing Method[S].
[31] THAKUR M,KUMAR N,DHIMAN R K,et al.Geological and Geotechnical Investigations of the Sataun Landslide Along the Active Sirmauri Tal Fault,Sa-taun,Northwestern Himalaya,India[J].Landslides,2023,20(5):1045-1063.
[32] 李媛茜,张 毅,孟兴民,等.活动构造断裂带巨型滑坡活动特性研究:以白龙江流域大小湾滑坡为例[J].兰州大学学报(自然科学版),2021,57(3):360-368.
LI Yuan-qian,ZHANG Yi,MENG Xing-min,et al.Analysis the Activity Characteristics of the Giant Landslide in Activetectonic Fault Zone:A Case Study of Daxiaowan Landslide in Bailong River Basin[J].Journal of Lanzhou University(Natural Sciences),2021,57(3):360-368.
[33] 张永双,苏生瑞,吴树仁,等.强震区断裂活动与大型滑坡关系研究[J].岩石力学与工程学报,2011,30(增2):3503-3513.
ZHANG Yong-shuang,SU Sheng-rui,WU Shu-ren,et al.Research on Relationship Between Fault Movement and Large-scale Landslide in Intensive Earthquake Region[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(S2):3503-3513.
[34] ZHANG Y,MENG X M,JORDAN C,et al.Investigating Slow-moving Landslides in the Zhouqu Region of China Using InSAR Time Series[J].Landslides,2018,15(7):1299-1315.
[35] SUN Q,ZHANG L,DING X L,et al.Slope Deformation Prior to Zhouqu,China Landslide from InSAR Time Series Analysis[J].Remote Sensing of Environment,2015,156:45-57.

Memo

Memo:
-
Last Update: 2024-10-01