[1] 吴延浩,江思珉,吴自军.地下水污染强度及渗透系数场的反演识别研究[J].水文地质工程地质,2023,50(4):193-203.
WU Yan-hao,JIANG Si-min,WU Zi-jun.Identification of Groundwater Pollution Intensity and Hydraulic Conductivity Field[J].Hydrogeology & Engineering Geology,2023,50(4):193-203.
[2] HOU Z Y,LU W X.Comparative Study of Surrogate Models for Groundwater Contamination Source Identification at DNAPL-Contaminated Sites[J].Hydrogeology Journal,2018,26(3):923-932.
[3] 闫雪嫚.基于贝叶斯理论的地下水DNAPLs污染源反演识别研究[D].长春:吉林大学,2021.
YAN Xue-man.Identification of DNAPLs-contaminated Groundwater Pollution Sources Based on Bayes Theory[D].Changchun:Jilin University,2021.
[4] AYVAZ M T.A Hybrid Simulation-optimization Approach for Solving the Areal Groundwater Pollution Source Identification Problems[J].Journal of Hydro-logy,2016,538:161-176.
[5] HAN K X,ZUO R,NI P C,et al.Application of a Genetic Algorithm to Groundwater Pollution Source Identification[J].Journal of Hydrology,2020, 589:125343.
[6] AN Y K,YAN X M,LU W X,et al.An Improved Bayesian Approach Linked to a Surrogate Model for Identifying Groundwater Pollution Sources[J].Hy-drogeology Journal,2022,30(2):601-616.
[7] BORAH T,BHATTACHARJYA R K.Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-optimization Model[J].Water Resources Management,2016,30(14):5163-5176.
[8] LUO J N,LI X L,XIONG Y,et al.Groundwater Pollution Source Identification Using Metropolis-hasting Algorithm Combined with Kalman Filter Algorithm[J].Journal of Hydrology,2023,626:130258.
[9] JIANG X,MA R,WANG Y X,et al.Two-stage Surrogate Model-assisted Bayesian Framework for Grou-ndwater Contaminant Source Identification[J].Journal of Hydrology,2021,594:125955.
[10] ZENG X K,WU J C,WANG D,et al.Assessing the Pollution Risk of a Groundwater Source Field at Western Laizhou Bay Under Seawater Intrusion[J].Environmental Research,2016,148:586-594.
[11] YAN X M,DONG W H,AN Y K,et al.A Bayesian-based Integrated Approach for Identifying Groundwater Contamination Sources[J].Journal of Hydrology,2019,579:124160.
[12] 安永凯,张岩祥,闫雪嫚.基于自适应多保真度Co-Kriging代理模型的地下水污染源反演识别[J].中国环境科学,2024,44(3):1376-1385.
AN Yong-kai,ZHANG Yan-xiang,YAN Xue-man.Identification of Groundwater Pollution Sources Based on Self-adaption Co-Kriging Multi-fidelity Surrogate Model[J].China Environmental Science,2024,44(3):1376-1385.
[13] 刘墉达,陈 喜,高 满,等.基于MCMC和ES-MDA方法的地下水数值模型非均质参数场及开采量的反演研究[J].水利学报,2023,54(10):1236-1247.
LIU Yong-da,CHEN Xi,GAO Man,et al.Inversion of Heterogeneous Parameters Field and Extraction Amount of Groundwater Numerical Model Based on MCMC and ES-MDA Methods[J].Journal of Hydraulic Engineering,2023,54(10):1236-1247.
[14] GUO J Y,LU W X,YANG Q C,et al. The Application of 0-1 Mixed Integer Nonlinear Programming Optimization Model Based on a Surrogate Model to Identify the Groundwater Pollution Source[J].Journal of Contaminant Hydrology,2019,220:18-25.
[15] CHANG Z B,GUO Z L,CHEN K W,et al.A Comparison of Inversion Methods for Surrogate-based Groundwater Contamination Source Identification with Varying Degrees of Model Complexity[J].Water Resources Research,2024,60(4):e2023WR036051.
[16] LAL A,DATTA B.Development and Implementation of Support Vector Machine Regression Surrogate Mo-dels for Predicting Groundwater Pumping-induced Saltwater Intrusion into Coastal Aquifers[J].Water Resources Management,2018,32(7):2405-2419.
[17] ZHOU Y C,LU Z Z.An Enhanced Kriging Surrogate Modeling Technique for High-dimensional Problems[J].Mechanical Systems and Signal Processing,2020,140:106687.
[18] MENGISTU T,GHALY W.Aerodynamic Optimization of Turbomachinery Blades Using Evolutionary Methods and ANN-based Surrogate Models[J].Optimization and Engineering,2008,9(3):239-255.
[19] LI J H,LU W X,WANG H,et al.Groundwater Contamination Source Identification Based on a Hybrid Particle Swarm Optimization-extreme Learning Machine[J].Journal of Hydrology,2020,584:124657.
[20] 后 锐,张毕西.基于MLP神经网络的区域物流需求预测方法及其应用[J].系统工程理论与实践,2005,25(12):43-47.
HOU Rui,ZHANG Bi-xi.A Method for Forecasting Regional Logistics Demand Based on MLP Neural Network and Its Application[J].Systems Engineering—Theory & Practice,2005,25(12):43-47.
[21] GHATE V N,DUDUL S V.Optimal MLP Neural Network Classifier for Fault Detection of Three Phase Induction Motor[J].Expert Systems with Applications,2010,37(4):3468-3481.
[22] 徐会军,陈洋波,李昼阳,等.基于LH-OAT分布式水文模型参数敏感性分析[J].人民长江,2012,43(7):19-23.
XU Hui-jun,CHEN Yang-bo,LI Zhou-yang,et al.Analysis on Parameter Sensitivity of Distributed Hyd-rological Model Based on LH-OAT Method[J].Yangtze River,2012,43(7):19-23.
[23] ZADEH F K,NOSSENT J,WOLDEGIORGIS B T,et al.A Fast and Effective Parameterization of Water Quality Models[J].Environmental Modelling & Software,2022,149:105331.
[24] 秦 萍,王 正,孙兆军,等.基于LH-OAT方法的VG模型参数敏感性分析[J].节水灌溉,2019(10):97-102.
QIN Ping,WANG Zheng,SUN Zhao-jun,et al.Sensitivity Analysis of VG Model Parameter Based on LH-OAT Method[J].Water Saving Irrigation,2019(10):97-102.
[25] 张双圣,强 静,刘汉湖,等.基于贝叶斯公式的地下水污染源识别[J].中国环境科学,2019,39(4):1568-1578.
ZHANG Shuang-sheng,QIANG Jing,LIU Han-hu,et al.Identification of Groundwater Pollution Sources Based on Bayes' Theorem[J].China Environmental Science,2019,39(4):1568-1578.
[26] YAN X M,LU W X,AN Y K,et al.Assessment of Parameter Uncertainty for Non-point Source Pollution Mechanism Modeling:A Bayesian-based Approach[J].Environmental Pollution,2020,263:114570.
[27] 梁识栋.高维参数水质模型参数不确定性分析方法研究[D].北京:清华大学,2016.
LIANG Shi-dong.Research on Parameter Uncertainty Analysis Method for Water Quality Model with High-dimensional Parameter Space[D].Beijing:Tsinghua University,2016.
[28] MUSTAFA S M T,NOSSENT J,GHYSELS G,et al.Integrated Bayesian Multi-model Approach to Quantify Input,Parameter and Conceptual Model Structure Uncertainty in Groundwater Modeling[J].Environmental Modelling & Software,2020,126:104654.
[29] WU W,REN J C,ZHOU X D,et al.Identification of Source Information for Sudden Water Pollution Incidents in Rivers and Lakes Based on Variable-fidelity Surrogate-DREAM Optimization[J].Environmental Modelling & Software,2020,133:104811.
[30] VRUGT J A.Markov Chain Monte Carlo Simulation Using the DREAM Software Package:Theory,Concepts,and MATLAB Implementation[J].Environmental Modelling & Software,2016,75:273-316.
[31] RIEDMILLER M,LERNEN A.Multi Layer Perceptron.Machine Learning Lab Special Lecture[R].Frei-burg:University of Freiburg,2014.
[32] 李含雪.基于气象数据和机器学习的土壤温度和水分预测模型构建[D].哈尔滨:东北农业大学,2022.
LI Han-xue.Construction of Soil Temperature and Moisture Prediction Model Based on Meteorological Data and Machine Learning[D].Harbin:Northeast Agricultural University,2022.