|Table of Contents|

LA-(MC-)ICP-MS U-Pb Dating Technique of Calcite and Its Application in Brittle Structures(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2019年第05期
Page:
505-516
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
LA-(MC-)ICP-MS U-Pb Dating Technique of Calcite and Its Application in Brittle Structures
Author(s):
ZHAO Zi-xian12 SHI Wei12*
(1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2. Key Laboratory ofNeotectonic Movement and Geohazard, Ministry of Natural Resources, Beijing 100081, China)
Keywords:
brittle structure structural deformation calcite U-Pb dating LA-(MC-)ICP-MS isotope chronology common lead reference material
PACS:
P597
DOI:
-
Abstract:
Brittle structures are formed in the shallow crust and record the deformation process of shallow crust structures. How to precisely define the age of shallow crustal deformation is one of the hotspots and difficulties in structural geology research. Brittle structural deformation occurs in a lower temperature and pressure environment, which results in a faster rock strain rate and a relatively weaker metamorphism and metasomatism. As a result, it is difficult to form syntectonic new minerals similar to the measurable age of ductile deformation, which makes precise dating of brittle structures become a difficult problem in the field of earth science. In recent years, the calcite U-Pb dating technology has made important progress, and the calcite U-Pb dating from brittle structural deformation can accurately date the age of structural deformation. The research progress of the calcite LA-(MC-)ICP-MS U-Pb dating technique in recent years was summarized, the characteristics of the syntectonic calcite vein, the theoretical basis of U-Pb isotope dating of calcite, the LA-(MC-)ICP-MS U-Pb dating technique of calcite and its examples of application were systematically introduced. Furthermore, pointing out the key problems and technical difficulties of this method at present depends on the geological significance of calcite U-Pb age and the success rate of age determination. Identifying syntectonic calcite veins in the field, dividing different stages of calcite and determining primary and secondary domains, can accurately reveal the geological significance of its age; besides, the accuracy of dating results can be improved by delineating the optimal target area to be measured, choosing reasonable common lead correction method and searching for ideal calcite reference materials.

References:

[1] ROBERTS N M W,WALKER R J.U-Pb Geochronology of Calcite-mineralized Faults:Absolute Timing of Rift-related Fault Events on the Northeast Atlantic Margin[J].Geology,2016,44(7):531-534.
[2] NURIEL P,WEINBERGER R,KYLANDER-CLARK A R C,et al.The Onset of the Dead Sea Transform Based on Calcite Age-strain Analyses[J].Geology,2017,45(7):587-590.
[3] HANSMAN R J,ALBERT R,GERDES A,et al.Absolute Ages of Multiple Generations of Brittle Structures by U-Pb Dating of Calcite[J].Geology,2018,46(3):207-210.
[4] 郑 勇,李海兵,王世广,等.断层泥自生伊利石年龄分析及其在龙门山断裂带的应用[J].地球学报,2019,40(1):173-185. ZHENG Yong,LI Hai-bing,WANG Shi-guang,et al.Authigenic Illite Age Analysis for Fault Gouge and Its Application to the Longmen Shan Fault Belt[J].Acta Geoscientica Sinica,2019,40(1):173-185.
[5] BLUNDELL D J.The Timing and Location of Major Ore Deposits in an Evolving Orogen:The Geodynamic Context[J].Geological Society,London,Special Publications,2002,204:1-12.
[6] FINK R,VIRGO S,ARNDT M,et al.Solid Bitumen in Calcite Veins from the Natih Formation in the Oman Mountains:Multiple Phases of Petroleum Migration in a Changing Stress Field[J].International Journal of Coal Geology,2016,157:39-51.
[7] JOLIE E,MOECK I,FAULDS J E.Quantitative Structural-geological Exploration of Fault-controlled Geothermal Systems:A Case Study from the Basin-and-range Province,Nevada(USA)[J].Geothermics,2015,54:54-67.
[8] COWAN D S.Do Faults Preserve a Record of Seismic Slip?A Field Geologist’s Opinion[J].Journal of Structural Geology,1999,21(8/9):995-1001.
[9] ZHANG Y Q,MA Y S,YANG N,et al.Cenozoic Extensional Stress Evolution in North China[J].Journal of Geodynamics,2003,36(5):591-613.
[10] SHI W,DONG S W,LI J H,et al.Formation of the Moping Dome in the Xuefengshan Orocline,Central China and Its Tectonic Significance[J].Acta Geologica Sinica(English Edition),2013,87(3):720-729.
[11] 朱 光,王 薇,顾承串,等.郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示[J].岩石学报,2016,32(4):935-949. ZHU Guang,WANG Wei,GU Cheng-chuan,et al.Late Mesozoic Evolution History of the Tan-Lu Fault Zone and Its Indication to Destruction Processes of the North China Craton[J].Acta Petrologica Sinica,2016,32(4):935-949.
[12] SHI W,ZHANG Y Q,DONG S W,et al.Intra-continental Dabashan Orocline,South Western Qinling,Central China[J].Journal of Asian Earth Sciences,2012,46:20-38.
[13] 李松峰,徐思煌.磷灰石裂变径迹研究进展[J].重庆科技学院学报(自然科学版),2009,11(1):61-64. LI Song-feng,XU Si-huang.Study on Progress of Apa-tite Fission Track[J].Journal of Chongqing Univer-sity of Science and Technology(Natural Sciences Edition),2009,11(1):61-64.
[14] 宫 伟,姜效典.利用磷灰石裂变径迹约束断裂活动时限的制约因素[J].海洋地质与第四纪地质,2015,35(2):101-109. GONG Wei,JIANG Xiao-dian.Application of Apatite Fission Track to Timing Fault Movement and Constraints[J].Marine Geology and Quaternary Geology,2015,35(2):101-109.
[15] 王先美,钟大赉,王 毅.利用磷灰石裂变径迹约束脆性断裂活动的时限[J].地球物理学进展,2008,23(5):1444-1455. WANG Xian-mei,ZHONG Da-lai,WANG Yi.A Case of Application Using Apatite Fission Track to Restrict the Time of Brittle Fault Movement[J].Progress in Geophysics,2008,23(5):1444-1455.
[16] 丁 林.裂变径迹定年方法的进展及应用[J].第四纪研究,1997,17(3):272-280. DING Lin.Advance of Fission-track Analysis Method and Its Application[J].Quaternary Sciences,1997,17(3):272-280.
[17] WANG Y C,DONG S W,SHI W,et al.The Jurassic Structural Evolution of the Western Daqingshan Area,Eastern Yinshan Belt,North China[J].International Geology Review,2017,59(15):1-23.
[18] WANG Y C,DONG S W,CHEN X H,et al.Yan-shanian Deformation Along the Northern Margin of the North China Craton:Constraints from Growth Strata in the Shiguai Basin,Inner Mongolia,China[J].Basin Research,2018,30(6):1155-1179.
[19] VAN DER PLUIJM B A,HALL C M,VROLIJK P J,et al.The Dating of Shallow Faults in the Earth’s Crust[J].Nature,2001,412:172-175.
[20] RING U,UYSAL I T,GLODNY J,et al.Fault-gouge Dating in the Southern Alps,New Zealand[J].Tectonophysics,2017,717:321-338.
[21] RAMSAY J G.The Crack-seal Mechanism of Rock Deformation[J].Nature,1980,284:135-139.
[22] UYSAL I T,ZHAO J X,GOLDING S D,et al.Sm-Nd Dating and Rare-earth Element Tracing of Calcite:Implications for Fluid-flow Events in the Bowen Basin,Australia[J].Chemical Geology,2007,238(1/2):63-71.
[23] NURIEL P,ROSENBAUM G,ZHAO J X,et al.U-Th Dating of Striated Fault Planes[J].Geology,2012,40(7):647-650.
[24] GILBERT A S.Encyclopedia of Geoarchaeology[M].Berlin:Springer,2017.
[25] AULT A K,REINERS P W,EVANS J P,et al.Linking Hematite(U-Th)/He Dating with the Microtextural Record of Seismicity in the Wasatch Fault Damage Zone,Utah,USA[J].Geology,2015,43(9):771-774.
[26] RASBURY E T,COLE J M.Directly Dating Geologic Events:U-Pb Dating of Carbonates[J].Reviews of Geophysics,2009,DOI:10.1029/2007RG000246.
[27] LI Q,PARRISH R R,HORSTWOOD M S A,et al.U-Pb Dating of Cements in Mesozoic Ammonites[J].Chemical Geology,2014,376:76-83.
[28] COOGAN L A,PARRISH R R,ROBERTS N M W.Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust:Insight from In-situ U-Pb Dating[J].Geology,2016,44(2):147-150.
[29] BURISCH M,GERDES A,WALTER B F,et al.Methane and the Origin of Five-element Veins:Mineralogy,Age,Fluid Inclusion Chemistry and Ore Forming Processes in the Odenwald,SW Germany[J].Ore Geology Reviews,2017,81:42-61.
[30] ROBERTS N M W,RASBURY E T,PARRISH R R,et al.A Calcite Reference Material for LA-ICP-MS U-Pb Geochronology[J].Geochemistry,Geophysics,Geo-systems,2017,18(7):2807-2814.
[31] GODEAU N,DESCHAMPS P,GUIHOU A,et al.U-Pb Dating of Calcite Cement and Diagenetic History in Microporous Carbonate Reservoirs:Case of the Urgonian Limestone,France[J].Geology,2018,46(3):247-250.
[32] PISAPIA C,DESCHAMPS P,BATTANI A,et al.U/Pb Dating of Geodic Calcite:New Insights on Western Europe Major Tectonic Events and Associated Diagenetic Fluids[J].Journal of the Geological Society,2018,175(1):60-70.
[33] YOKOYAMA T,KIMURA J,MITSUGUCHI T,et al.U-Pb Dating of Calcite Using LA-ICP-MS:Instrumental Setup for Non-matrix-matched Age Dating and Determination of Analytical Areas Using Elemental Imaging[J].Geochemical Journal,2018,52(6):531-540.
[34] RING U,GERDES A.Kinematics of the Alpenrhein-Bodensee Graben System in the Central Alps:Oligocene/Miocene Transtension Due to Formation of the Western Alps Arc[J].Tectonics,2016,35(6):1367-1391.
[35] GOODFELLOW B W,VIOLA G,BINGEN B,et al.Palaeocene Faulting in SE Sweden from U-Pb Dating of Slickenfibre Calcite[J].Terra Nova,2017,29(5):321-328.
[36] BEAUDOIN N,LACOMBE O,ROBERTS N M W,et al.U-Pb Dating of Calcite Veins Reveals Complex Stress Evolution and Thrust Sequence in the Bighorn Basin,Wyoming,USA[J].Geology,2018,46(11):1015-1018.
[37] NURIEL P,CRADDOCK J,KYLANDER-CLARK A R C,et al.Reactivation History of the North Anatolian Fault Zone Based on Calcite Age-strain Analyses[J].Geology,2019,47(5):465-469.
[38] 邵世才,何绍勋.剪切带型金矿床中含金石英脉的一种可能生成机制[J].大地构造与成矿学,1994,18(2):155-162. SHAO Shi-cai,HE Shao-xun.Formation Machanism of the Gold-bearing Quartz Veins[J].Geotectonica et Metallogenia,1994,18(2):155-162.
[39] 张艳妮,李荣西,刘海青.纤维状方解石脉与构造流体研究[J].地质科技情报,2014,33(4):12-18. ZHANG Yan-ni,LI Rong-xi,LIU Hai-qing.A Review of Fibrous Calcite Vein and Tectonic Fluids[J].Geological Science and Technology Information,2014,33(4):12-18.
[40] BONS P D,ELBURG M A,GOMEZ-RIVAS E A.Review of the Formation of Tectonic Veins and Their Microstructures[J].Journal of Structural Geology,2012,43:33-62.
[41] 王兴安,刘正宏,王挽琼,等.内蒙古大青山逆冲推覆构造带中同构造方解石脉[J].吉林大学学报(地球科学版),2012,42(增3):111-118. WANG Xing-an,LIU Zheng-hong,WANG Wan-qiong,et al.Syntectonic Calcite Veins in Daqingshan Thrust Nappe Structure,Inner Mongolia[J].Journal of Jilin University(Earth Science Edition),2012,42(S3):111-118.
[42] 佟 昕.巢北地区二叠系、三叠系碳酸盐岩方解石脉的微观特征与裂缝活动关系研究[D].青岛:中国石油大学,2015. TONG Xin.Study on the Relationship Between Calcite Vein Microscopic Characteristics and Fracture Activities of Permian and Triassic Limestones in Northern Chaohu Area[D].Qingdao:China University of Petroleum,2015.
[43] 田 密,施 炜,李建华,等.江汉盆地西北部断陷带构造变形分析与古应力场演化序列[J].地质学报,2010,84(2):159-170. TIAN Mi,SHI Wei,LI Jian-hua,et al.Tectonic Deformation Analysis and Paleostress Field Sequence of the Grabens in the Northwestern Jianghan Basin[J].Acta Geologica Sinica,2010,84(2):159-170.
[44] 董树文,施 炜,张岳桥,等.大巴山晚中生代陆内造山构造应力场[J].地球学报,2010,31(6):769-780. DONG Shu-wen,SHI Wei,ZHANG Yue-qiao,et al.The Tectonic Stress Field in the Dabashan Orogen Resulting from Late Mesozoic Intra-continental Orogeny[J].Acta Geoscientica Sinica,2010,31(6):769-780.
[45] BONS P D,MONTENARI M.The Formation of Antitaxial Calcite Veins with Well-developed Fibres,Oppaminda Creek,South Australia[J].Journal of Structural Geology,2005,27(2):231-248.
[46] PARNELL J,HONGHAN C,MIDDLETON D,et al.Significance of Fibrous Mineral Veins in Hydrocarbon Migration:Fluid Inclusion Studies[J].Journal of Geochemical Exploration,2000,69/70:623-627.
[47] HILLIER R D,COSGROVE J W.Core and Seismic Observations of Overpressure-related Deformation Within Eocene Sediments of the Outer Moray Firth,UKCS[J].Petroleum Geoscience,2002,8(2):141-149.
[48] STONELEY R.Fibrous Calcite Veins,Overpressures,and Primary Oil Migration[J].AAPG Bulletin,1983,67(9):1089-1091.
[49] 陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学[M].北京:地质出版社,2005. CHEN Yue-long,YANG Zhong-fang,ZHAO Zhi-dan.Isotopic Geochronology and Geochemistry[M].Beijing:Geological Publishing House,2005.
[50] 陈 文,万渝生,李华芹,等.同位素地质年龄测定技术及应用[J].地质学报,2011,85(11):1917-1947. CHEN Wen,WAN Yu-sheng,LI Hua-qin,et al.Isotope Geochronology:Technique and Application[J].Acta Geologica Sinica,2011,85(11):1917-1947.
[51] YUAN H L,GAO S,DAI M N,et al.Simultaneous Determinations of U-Pb Ages,Hf Isotopes of Zircon by Excimer Laser-ablation Quadrupole and Multiple-collector ICP-MS[J].Chemical Geology,2008,247(1/2):100-118.
[52] 崔玉荣,周红英,耿建珍,等.LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定[J].地球学报,2012,33(6):865-876. CUI Yu-rong,ZHOU Hong-ying,GENG Jian-zhen,et al.In-situ LA-MC-ICP-MS U-Pb Isotopic Dating of Monazite[J].Acta Geoscientica Sinica,2012,33(6):865-876.
[53] 周红英,李怀坤,崔玉荣,等.金红石U-Pb同位素定年技术研究[J].地质学报,2013,87(9):1439-1446. ZHOU Hong-ying,LI Huai-kun,CUI Yu-rong,et al.Rutile U-Pb Isotopic Dating Methodology[J].Acta Geologica Sinica,2013,87(9):1439-1446.
[54] GERDES A,ZEH A.Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons:Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany[J].Earth and Planetary Science Letters,2006,249(1/2):47-61.
[55] GERDES A,ZEH A.Zircon Formation Versus Zircon Alteration:New Insights from Combined U-Pb and Lu-Hf In-situ LA-ICP-MS Analyses,and Consequences for the Interpretation of Archean Zircon from the Central Zone of the Limpopo Belt[J].Chemical Geo-logy,2009,261(3/4):230-243.
[56] LUDWIG K R.User’s Manual for Isoplot 3.75:A Geo-chronological Toolkit for Microsoft Excel[R].Berkeley:Berkeley Geochronology Center,2012.
[57] CHERNIAK D J.An Experimental Study of Strontium and Lead Diffusion in Calcite and Implications for Carbonate Diagenesis and Metamorphism[J].Geochimica et Cosmochimica Acta,1997,61(19):4173-4179.
[58] 万渝生,刘敦一,简 平,等.独居石和锆石SHRIMP U-Pb定年对比[J].科学通报,2004,49(12):1185-1190. WAN Yu-sheng,LIU Dun-yi,JIAN Ping,et al.Comparison of SHRIMP U-Pb Dating of Monazite and Zircon[J].Chinese Science Bulletin,2004,49(12):1185-1190.
[59] PAQUETTE J L,GONCALVES P,DEVOUARD B,et al.Micro-drilling ID-TIMS U-Pb Dating of Single Monazites:A New Method to Unravel Complex Poly-metamorphic Evolutions,Application to the UHT Granulites of Andriamena(North-central Madagascar)[J].Contributions to Mineralogy and Petrology,2004,147(1):110-122.
[60] STOREY C D,JEFFRIES T E,SMITH M.Common Lead-corrected Laser Ablation ICP-MS U-Pb Systematics and Geochronology of Titanite[J].Chemical Geo-logy,2006,227(1/2):37-52.
[61] LI Q L,LIN W,SU W,et al.SIMS U-Pb Rutile Age of Low-temperature Eclogites from Southwestern Chinese Tianshan,NW China[J].Lithos,2011,122(1/2):76-86.
[62] LI Q L,LI X H,WU F Y,et al.In-situ SIMS U-Pb Dating of Phanerozoic Apatite with Low U and High Common Pb[J].Gondwana Research,2012,21(4):745-756.
[63] 李艳广,汪双双,刘民武,等.斜锆石LA-ICP-MS U-Pb定年方法及应用[J].地质学报,2015,89(12):2400-2418. LI Yan-guang,WANG Shuang-shuang,LIU Min-wu,et al.U-Pb Dating Study of Baddeleyite by LA-ICP-MS Technique and Application[J].Acta Geologica Sinica,2015,89(12):2400-2418.
[64] 王小娟,刘玉平,缪应理,等.都龙锡锌多金属矿床LA-MC-ICP-MS锡石U-Pb测年及其意义[J].岩石学报,2014,30(3):867-876. WANG Xiao-juan,LIU Yu-ping,MIAO Ying-li,et al.In-situ LA-MC-ICP-MS Cassiterite U-Pb Dating of Dulong Sn-Zn Polymetallic Deposit and Its Significance[J].Acta Petrologica Sinica,2014,30(3):867-876.
[65] 刘 颖.LA-ICP-MS榍石U-Pb定年方法优化及其地质应用[D].北京:中国地质大学,2018. LIU Ying.Method Optimization and Geological Application of the LA-ICP-MS Titanite U-Pb Dating[D].Beijing:China University of Geosciences,2018.
[66] 崔玉荣,涂家润,陈 枫,等.LA-(MC-)ICP-MS锡石U-Pb定年研究进展[J].地质学报,2017,91(6):1386-1399. CUI Yu-rong,TU Jia-run,CHEN Feng,et al.The Research Advances in LA-(MC-)ICP-MS U-Pb Dating of Cassiterite[J].Acta Geologica Sinica,2017,91(6):1386-1399.
[67] TERA F,WASSERBURG G J.U-Th-Pb Systematics in Three Apollo 14 Basalts and the Problem of Initial Pb in Lunar Rocks[J].Earth and Planetary Science Letters,1972,14(3):281-304.
[68] TERA F,WASSERBURG G J.U-Th-Pb Systematics in Lunar Highland Samples from the Luna 20 and Apollo 16 Missions[J].Earth and Planetary Science Letters,1972,17(1):36-51.
[69] VAKS A,WOODHEAD J,BAR-MATTHEWS M,et al.Pliocene-Pleistocene Climate of the Northern Margin of Saharan-Arabian Desert Recorded in Speleothems from the Negev Desert,Israel[J].Earth and Planetary Science Letters,2013,368:88-100.
[70] 刘恩涛,ZHAO Jian-xin,潘松圻,等.盆地流体年代学研究新技术:激光原位方解石U-Pb定年法[J].地球科学,2019,44(3):698-712. LIU En-tao,ZHAO Jian-xin,PAN Song-qi,et al.A New Technology of Basin Fluid Geochronology:In-situ U-Pb Dating of Calcite[J].Earth Science,2019,44(3):698-712.

Memo

Memo:
-
Last Update: 2019-09-19