|Table of Contents|

Three-dimensional Numerical Simulation of Diffusion Law of Short-offset Grounded-wire Transient Electromagnetic Field(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2020年第06期
Page:
711-721
Research Field:
电磁法勘探专辑
Publishing date:

Info

Title:
Three-dimensional Numerical Simulation of Diffusion Law of Short-offset Grounded-wire Transient Electromagnetic Field
Author(s):
CHANG Jiang-hao1234 XUE Guo-qiang1235*
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Innovation Academy of Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 4. Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, Hebei, China; 5. Integrated Geophysical Simulation Lab(Key Laboratory of Chinese Geophysical Society), Chang'an University, Xi'an 710054, Shaanxi, China
Keywords:
geophysics transient electromagnetic method grounded-wire short-offset numerical simulation three-dimensional anomalous body diffusion law forward modeling
PACS:
P631
DOI:
10.19814/j.jese.2020.07048
Abstract:
Short-offset grounded-wire transient electromagnetic method(SOTEM)has considerably improved the signal intensity by using the form of near-source detection. The present researches on SOTEM responses are mainly based on 1D models and explore the response characteristics and detection abilities of two components: electric field Ex and magnetic field Hz, which are not conducive to the accurate exploration of complex targets. Based on the above-mentioned problems, a three-dimensional(3D)finite-difference time-domain(FDTD)was employed to simulate the diffusion pattern of SOTEM field in strata and the influence of 3D anomalous body on the diffusion of SOTEM field. The results show that the positive extreme value area of electric field Ex component mainly appears nearby the transmitting source, and diffuses gradually downward with time; the positive extreme value area and negative extreme value area of electric field Ey component are mainly located at two ends of the transmitting source, and diffuse gradually downward and outward with time; the electric field Ez component undergoes jump at strata boundary; the positive extreme value area and negative extreme value area of magnetic field Hx component are respectively located at two ends of the transmitting source, and diffuse gradually downward and outward with time; the upper part and lower part of magnetic field Hy component are negative value area and positive value area, respectively, indicating that Hy component will also be affected by the return current; the extreme value area of magnetic field Hz component is mainly below the transmitting source, and gradually moves downward with time; for the 3D anomalous body, the sensitivity areas of electric field Ex and magnetic field Hy components are rightly above the anomalous body, while the sensitivity areas of electric field Ey and magnetic field Hx components are outside the anomalous body and distribute around it, and the sensitivity areas of magnetic field Hz component are on both sides of the anomalous body(close to transmitting source, and distant from transmitting source, respectively). It shows that the five components of SOTEM field have different sensitivity areas to the 3D anomalous body, and different components should be observed in different areas.

References:

[1] 滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,25(7):767-771. TENG Ji-wen.Strengthening Geophysical Exploration and Exploitation of Metallic Minerals in the Second Deep Space of the Crustal Interior[J].Geological Bulletin of China,2006,25(7):767-771.
[2] 孟贵祥.大型矿集区接替资源定位预测研究:以铜陵地区隐伏矿找矿预测研究为例[D].北京:中国地质科学院,2006. MENG Gui-xiang.The Research on the Location Prediction of the Reserve Resources of the Large-scale Ore Concentration Area:Taking the Exploring Prediction for Deeper Hidden Deposits of Tongling Ore Concentration for Example[D].Beijing:Chinese Academy of Geological Sciences,2006.
[3] 李 貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002. LI Xiu.Theory and Application of Transient Electromagnetic Sounding[M].Xi'an:Shaanxi Science and Technology Press,2002.
[4] 何继善,薛国强.短偏移距电磁探测技术概述[J].地球物理学报,2018,61(1):1-8. HE Ji-shan,XUE Guo-qiang.Review of the Key Techniques on Short-offset Electromagnetic Detection[J].Chinese Journal of Geophysics,2018,61(1):1-8.
[5] 底青云,朱日祥,薛国强,等.我国深地资源电磁探测新技术研究进展[J].地球物理学报,2019,62(6):2128-2138. DI Qing-yun,ZHU Ri-xiang,XUE Guo-qiang,et al.New Development of the Electromagnetic(EM)Methods for Deep Exploration[J].Chinese Journal of Geophysics,2019,62(6):2128-2138.
[6] 薛国强,李 貅,底青云.瞬变电磁法正反演问题研究进展[J].地球物理学进展,2008,23(4):1165-1172. XUE Guo-qiang,LI Xiu,DI Qing-yun.Research Progress in TEM Forward Modeling and Inversion Calculation[J].Progress in Geophysics,2008,23(4):1165-1172.
[7] 薛国强,闫 述,底青云,等.多道瞬变电磁法(MTEM)技术分析[J].地球科学与环境学报,2015,37(1):94-100. XUE Guo-qiang,YAN Shu,DI Qing-yun,et al.Technical Analysis of Multi-transient Electromagnetic Method[J].Journal of Earth Sciences and Environmen,2015,37(1):94-100.
[8] 嵇艳鞠,林 君,朱凯光,等.利用瞬变电磁技术进行地下水资源勘察[J].地球物理学进展,2005,20(3):828-833. JI Yan-ju,LIN Jun,ZHU Kai-guang,et al.Underground Water Prospecting by Transient Electromagnetic Method[J].Progress in Geophysics,2005,20(3):828-833.
[9] 于景邨.矿井瞬变电磁法勘探[M].徐州:中国矿业大学出版社,2007. YU Jing-cun.Mine Transient Electromagnetic Exploration[M].Xuzhou:China University of Mining and Technology Press,2007.
[10] 薛国强,秦克章,李 貅,等.西藏沙让特大型钼矿的发现与瞬变电磁法探查[J].地球物理学进展,2011,26(3):954-960. XUE Guo-qiang,QIN Ke-zhang,LI Xiu,et al.Discovery and TEM Detection for Large-scale Porphyry Molybdenum Deposit in Tibet[J].Progress in Geophysics,2011,26(3):954-960.
[11] 陈卫营,薛国强.瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J].地球物理学进展,2013,28(5):2709-2717. CHEN Wei-ying,XUE Guo-qiang.Application on Coal-mine Voids Detection with Multi-device TEM Technology[J].Progress in Geophysics,2013,28(5):2709-2717.
[12] 常江浩.煤矿富水区矿井瞬变电磁响应三维数值模拟及应用[D].徐州:中国矿业大学,2017. CHANG Jiang-hao.Three-dimensional Numerical Simulation and Application of Mine Transient Elec-tromagnetic Responses of Water-rich Area in Coal Mine[D].Xuzhou:China University of Mining and Technology,2017.
[13] 嵇艳鞠,王 远,徐 江,等.无人飞艇长导线源时域地空电磁勘探系统及其应用[J].地球物理学报,2013,56(11):3640-3650. JI Yan-ju,WANG Yuan,XU Jiang,et al.Development and Application of the Grounded Long Wire Source Airborne Electromagnetic Exploration System Based on an Unmanned Airship[J].Chinese Journal of Geophysics,2013,56(11):3640-3650.
[14] 薛国强,陈卫营,周楠楠,等.接地源瞬变电磁短偏移深部探测技术[J].地球物理学报,2013,56(1):255-261. XUE Guo-qiang,CHEN Wei-ying,ZHOU Nan-nan,et al.Short-offset TEM Technique with a Grounded Wire Source for Deep Sounding[J].Chinese Journal of Geophysics,2013,56(1):255-261.
[15] 薛国强,陈卫营,武 欣,等.电性源短偏移距瞬变电磁研究进展[J].中国矿业大学学报,2020,49(2):215-226. XUE Guo-qiang,CHEN Wei-ying,WU Xin,et al.Review on Research of Short-offset Transient Electromagnetic Method[J].Journal of China University of Mining and Technology,2020,49(2):215-226.
[16] XUE G Q,GELIUS L J,SAKYI P A,et al.Discovery of a Hidden BIF Deposit in Anhui Province,China by Integrated Geological and Geophysical Investigations[J].Ore Geology Reviews,2014,63:470-477.
[17] CHEN W Y,XUE G Q,MUHAMMAD Y K,et al.Application of Short-offset TEM(SOTEM)Technique in Mapping Water-enriched Zones of Coal Stratum,an Example from East China[J].Pure and Applied Geophysics,2015,172:1643-1651.
[18] ZHOU N N,XUE G Q,GELIUS L J,et al.Analysis of the Near-source Error in TEM Due to the Dipole Hypothesis[J].Journal of Applied Geophysics,2015,116:75-83.
[19] 崔江伟.电性源短偏移距瞬变电磁法全程视电阻率计算研究[D].南昌:东华理工大学,2015. CUI Jiang-wei.Calculation of All-time Apparent Resistivity for the SOTEM[D].Nanchang:East China University of Technology,2015.
[20] 陈卫营,薛国强,崔江伟,等.SOTEM响应特性分析与最佳观测区域研究[J].地球物理学报,2016,59(2):739-748. CHEN Wei-ying,XUE Guo-qiang,CUI Jiang-wei,et al.Study on the Response and Optimal Observation Area for SOTEM[J].Chinese Journal of Geophysics,2016,59(2):739-748.
[21] 陈卫营,李 海,薛国强,等.SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J].地球物理学报,2017,60(9):3667-3676. CHEN Wei-ying,LI Hai,XUE Guo-qiang,et al.1D OCCAM Inversion of SOTEM Data and Its Application to 3D Models[J].Chinese Journal of Geophysics,2017,60(9):3667-3676.
[22] 陈 康.电性源短偏移距瞬变电磁多源多分量探测方法研究[D].北京:中国科学院大学,2018. CHEN Kang.Research on Multi-source and Multi-component Detection Method of SOTEM[D].Beijing:University of Chinese Academy of Sciences,2018.
[23] YEE K S.Numerical Solution of Initial Boundary Problems Involving Maxwell's Equations in Isotropic Media[J].IEEE Transactions on Antennas and Pro-pagation,1966,14(3):302-307.
[24] WANG T,HOHMANN G W.A Finite-difference Time-domain Solution for Three-dimensional Electromagnetic Modeling[J].Geophysics,1993,58(6):797-809.
[25] 孙怀凤,李 貅,李术才,等.考虑关断时间的回线源激发TEM三维时域有限差分正演[J].地球物理学报,2013,56(3):1049-1064. SUN Huai-feng,LI Xiu,LI Shu-cai,et al.Three-dimensional FDTD Modeling of TEM Excited by a Loop Source Considering Ramp Time[J].Chinese Journal of Geophysics,2013,56(3):1049-1064.
[26] KUZUOGLU M,MITTRA R.Frequency Dependence of the Constitutive Parameters of Causal Perfectly Matched Anisotropic Absorbers[J].IEEE Microwave and Guided Wave Letters,1996,6(12):447-449.
[27] RODEN J A,GEDNEY S D.Convolutional PML(CPML):An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media[J].Microwave and Optical Technology Letters,2000,27(5):334-339.
[28] 李展辉,黄清华.复频率参数完全匹配层吸收边界在瞬变电磁法正演中的应用[J].地球物理学报,2014,57(4):1292-1299. LI Zhan-hui,HUANG Qing-hua.Application of the Complex Frequency Shifted Perfectly Matched Layer Absorbing Boundary Conditions in Transient Electromagnetic Method Modeling[J].Chinese Journal of Geophysics,2014,57(4):1292-1299.
[29] 陈卫营,韩思旭,薛国强.电性源地-井瞬变电磁法全分量响应特性与探测能力分析[J].地球物理学报,2019,62(5):1969-1980. CHEN Wei-ying,HAN Si-xu,XUE Guo-qiang.Ana-lysis on the Full-component Response and Detectability of Electric Source Surface-to-borehole TEM Method[J].Chinese Journal of Geophysics,2019,62(5):1969-1980.

Memo

Memo:
-
Last Update: 2020-12-20