|Table of Contents|

Application of Multi-electrode Resistivity Method and Audio-frequency Magnetotelluric Method in the Investigation of Urban Water Tunnel(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2020年第06期
Page:
767-775
Research Field:
电磁法勘探专辑
Publishing date:

Info

Title:
Application of Multi-electrode Resistivity Method and Audio-frequency Magnetotelluric Method in the Investigation of Urban Water Tunnel
Author(s):
YE Yi-xin1 DU Jia-ming1 XUE Hai-jun2 AI Zheng-min1 JIANG Fen-yong1 HUANG Yuan-sheng1
1. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, Jiangxi, China; 2. Shaanxi Coal Geophysical Prospecting and Surveying Co., Ltd., Xi'an 710005, Shaanxi, China
Keywords:
cave exploration fault structure Quaternary multi-electrode resistivity method audio-frequency magnetotelluric method forward modelling inversion Zhejiang
PACS:
P319.2
DOI:
10.19814/j.jese.2020.07015
Abstract:
To avoid geological hazards during the construction of a large water tunnel in Zhejiang province, an audio-frequency magnetotelluric(AMT)method in combination with multi-electrode resistivity method was used to investigate shallow overburden thickness, bedrock weathering thickness, and fault structures. The abnormal shape of shallow underground water-bearing fracture zones and rock mass stability were revealed by multi-electrode resistivity method. The locations of deep geological faults were inferred by AMT in some areas. The geoelectrical models were established based on the previous geological data. The inversion results demonstrate that the combination of two methods can accurately indicate the responses of underground geological bodies with different depths. The simulation results also provide a reference for design and construction of the future investigation. The inversion results of field data show that the thickness of miscellaneous fill, conglomeratic silty clay, and gravel clay, is 1-15 m; the cross profiles of multi-electrode resistivity inversion reveal 6 fracture(joint)development zones, the dip angles are 56°-75°, the widths are 10-15 m; AMT inversion indicates a concealed developed fault area with the width of ~15 m; structural fracture zones have great damages on the stability of rock mass in this area, which is controlled by the weak structural plane, and easily affected by groundwater; the stability of rock mass is poorer in the shallow location of AMT profile, which is manifested as a downward extended low resistivity anomaly.

References:

[1] 罗登贵,刘江平,王 京,等.活动断层高密度电法响应特征与应用研究[J].地球物理学进展,2014,29(4):1920-1925. LUO Deng-gui,LIU Jiang-ping,WANG Jing,et al.Study on the Response Characteristics and Application of High Density Resistivity Method of Active Fault[J].Progress in Geophysics,2014,29(4):1920-1925.
[2] 董浩斌,王传雷.高密度电法的发展与应用[J].地学前缘,2003,10(1):171-176. DONG Hao-bin,WANG Chuan-lei.Development and Application of 2D Resistivity Imaging Surveys[J].Earth Science Frontiers,2003,10(1):171-176.
[3] 严加永,孟贵祥,吕庆田,等.高密度电法的进展与展望[J].物探与化探,2012,36(4):576-584. YAN Jia-yong,MENG Gui-xiang,LU Qing-tian,et al.The Progress and Prospect of the Electrical Resistivity Imaging Survey[J].Geophysical and Geochemical Exploration,2012,36(4):576-584.
[4] 王士鹏.高密度电法在水文地质和工程地质中的应用[J].水文地质工程地质,2000,27(1):52-56. WANG Shi-peng.Application of High-density Ele-ctrical Method in Hydrogeology and Engineering Geo-logy[J].Hydrogeology and Engineering Geology,2000,27(1):52-56.
[5] 吕玉增,阮百尧.高密度电法工作中的几个问题研究[J].工程地球物理学报,2005,2(4):264-269. LU Yu-zeng,RUAN Bai-yao.Discuss Several Pro-blems About High Density Resistivity[J].Chinese Journal of Engineering Geophysics,2005,2(4):264-269.
[6] 郑智杰,曾 洁,赵 伟,等.高密度电法在岩溶区找水中的应用研究[J].地球物理学进展,2019,34(3):1262-1267. ZHENG Zhi-jie,ZENG Jie,ZHAO Wei,et al.Application Research of High Density Resistivity Method in Water Exploring in Karst Area[J].Progress in Geo-physics,2019,34(3):1262-1267.
[7] 闫亚景,闫永帅,赵贵章,等.基于高密度电法的天然边坡水分运移规律研究[J].岩土力学,2019,40(7):2807-2814. YAN Ya-jing,YAN Yong-shuai,ZHAO Gui-zhang,et al.Study on Moisture Migration in Natural Slope Using High-density Electrical Resistivity Tomography Method[J].Rock and Soil Mechanics,2019,40(7):2807-2814.
[8] 王志鹏,刘江平,易 磊.2D、3D高密度电法探测断层效果及其应用[J].科学技术与工程,2019,19(25):75-82. WANG Zhi-peng,LIU Jiang-ping,YI Lei.Effect and Application of 2D and 3D High Density Resistivity Method for Fault Detection[J].Science Technology and Engineering,2019,19(25):75-82.
[9] 郑智杰,曾 洁,甘伏平.不同深度谷地对高密度电法探测地下岩溶管道的影响试验研究[J].科学技术与工程,2016,16(34):12-17. ZHENG Zhi-jie,ZENG Jie,GAN Fu-ping.Experimental Study on the Influence of Different Valley Depth on the High Density Resistivity Method[J].Science Technology and Engineering,2016,16(34):12-17.
[10] 余 年,庞 方.音频大地电磁测深法在地热勘查中的应用研究[J].水文地质工程地质,2010,37(3):135-138. YU Nian,PANG Fang.Application of Audio Magnetotelluric Sounding in the Geothermal Exploration[J].Hydrogeology and Engineering Geology,2010,37(3):135-138.
[11] 杨炳南,周 琦,杜远生,等.音频大地电磁法对深部隐伏构造的识别与应用:以贵州省松桃县李家湾锰矿为例[J].地质科技情报,2015,34(6):26-32. YANG Bing-nan,ZHOU Qi,DU Yuan-sheng,et al.Identification and Application of Audio Magnetotellurics to the Deep Buried Structure:A Case Study of Lijiawan Manganese Deposit at Songtao County in Guizhou Province[J].Geological Science and Techno-logy Information,2015,34(6):26-32.
[12] 朱自串,周 丹,李德文,等.音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J].物探与化探,2019,43(6):1268-1276. ZHU Zi-chuan,ZHOU Dan,LI De-wen,et al.The Application of Natural Field Audio Magnetotellurics Sounding to the Exploration of the Vientiane Basin Potassium Salt Deposit in Laos[J].Geophysical and Geochemical Exploration,2019,43(6):1268-1276.
[13] 何国丽,王光杰,周 超,等.音频大地电磁法在探测地下水中的应用:以湛江南木水为例[J].地球物理学进展,2019,34(1):304-309. HE Guo-li,WANG Guang-jie,ZHOU Chao,et al.Application of Audio-frequency Magnetotelluric(AMT)in Groundwater Exploration:A Case of the Nanmu-shui Area in Zhanjiang[J].Progress in Geophysics,2019,34(1):304-309.
[14] 汤井田,刘子杰,刘峰屹,等.音频大地电磁法强干扰压制试验研究[J].地球物理学报,2015,58(12):4636-4647. TANG Jing-tian,LIU Zi-jie,LIU Feng-yi,et al.The Denoising of the Audio Magnetotelluric Data Set with Strong Interferences[J].Chinese Journal of Geophy-sics,2015,58(12):4636-4647.
[15] 段圣龙.高频大地电磁法在戴云山隧道围岩分级中的应用[J].物探化探计算技术,2018,40(3):378-383. DUAN Sheng-long.The Application of High Frequency Magnetotelluric Method in the Rock Mass Classification of Daiyunshan Tunnel[J].Computing Techniques for Geophysical and Geochemical Exploration,2018,40(3):378-383.
[16] 张 林,雷 宛,胡 旭,等.高密度电法与音频大地电磁法在四川某地热勘探中的应用[J].勘察科学技术,2018(6):55-58. ZHANG Lin,LEI Wan,HU Xu,et al.Application of High-density Electrical Method and Audio Magnetotelluric Method in a Geothermal Exploration in Sichuan Province[J].Site Investigation Science and Technology,2018(6):55-58.
[17] 陈 松,庞凯旋,陈长敬,等.基于音频大地电磁测深和高密度电法的城市隐伏断裂联合探测[J].工程地球物理学报,2020,17(4):470-477. CHEN Song,PANG Kai-xuan,CHEN Chang-jing,et al.Joint Detection of Urban Buried Faults with Audio Magnetotelluric Sounding and High Density Resistivity Method [J].Chinese Journal of Engineering Geophysics,2020,17(4):470-477.
[18] 陈 实,李振宇,潘建伟,等.基于高密度电法的煤炭采空区数值模拟及应用[J].新疆地质,2018,36(2):189-193. CHEN Shi,LI Zhen-yu,PAN Jian-wei,et al.The Numerical Simulation and Application of Coal Goaf Based on High Density Resistivity Method[J].Xinjiang Geology,2018,36(2):189-193.
[19] KEY K.MARE2DEM:A 2-D Inversion Code for Controlled-source Electromagnetic and Magnetotelluric Data[J].Geophysical Journal International,2016,207(1):571-588.
[20] 张文鑫.AMT在山区隧道地质勘察中的研究与应用[D].成都:成都理工大学,2019. ZHANG Wen-xin.Research and Application of AMT in Mountain Tunnel Geological Exploration[D].Chengdu:Chengdu University of Technology,2019.

Memo

Memo:
-
Last Update: 2020-12-20