|Table of Contents|

Size Distributions and Sources Apportionment of Aerosol Number Concentrations over the Eastern Qinghai-Tibet Plateau, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2023年第01期
Page:
80-92
Research Field:
环境与可持续发展
Publishing date:

Info

Title:
Size Distributions and Sources Apportionment of Aerosol Number Concentrations over the Eastern Qinghai-Tibet Plateau, China
Author(s):
SHEN Li-juan1 WANG Hong-lei2* ZHAO Tian-liang2 SHI Shuang-shuang1 LU Wen2
(1. School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, Jiangsu, China; 2. Key Laboratory for Aerosol-cloud-precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China)
Keywords:
aerosol PM2.5 gas pollutant size distribution diurnal variation potential source affecting area Qinghai-Tibet Plateau
PACS:
X513
DOI:
10.19814/j.jese.2022.10050
Abstract:
The spatio-temporal variation of aerosol size distribution, which indicates the primary and secondary sources of atmospheric aerosols, can reflect the dynamic and chemical processes that they were subjected to. A wide-range particle size spectrometer was used to observe the aerosol size distributions(10 nm-10 μm)in Litang county of Sichan province over the eastern Qinghai-Tibet Plateau from July 6 to August 3, 2017. Combining with the data of six atmospheric pollutants(PM2.5, PM10, SO2, NO2, CO, and O3), meteorological elements, trajectory model of HYSPLIT, potential source contribution function(PSCF)and concentration-weighted trajectory(CWT)analysis, the size distributions, potential sources and affecting areas of aerosols on the eastern margin of Qinghai-Tibet Plateau were discussed. The results show that the average aerosol number concentration is 4 660.3 cm-3 in Litang area, and mainly concentrates below 500 nm, which accounts for 99.95% of total number concentration; the aerosol number concentrations in different modes of particle vary greatly, that of nucleation mode, Aitken mode, accumulation mode, and coarse mode of particle are 391.9, 4 218.0, 50.1, and 0.4 cm-3, respectively; meanwhile, the diurnal variations of aerosol number concentration in different modes of particle are all bimodal distributions, with a discrepancy in the peak time, which is located at 12:00 and 19:00 for the nucleation mode of particle, and at 08:00 and 20:00 for the Aitken mode, accumulation mode and coarse mode of particle; the spectrum of aerosol number concentration and surface area concentration has both unimodal distributions with peaks at 50 nm and 170 nm, respectively, the peak concentrations of which are 7 361.9 cm-3·nm-1 and 215.5 μm2·cm-3·nm-1, accordingly. Finally, the potential sources of aerosol number concentration with high PSCF values in Litang area include two areas, which are a local polluted region in the northeast and a foreign region in the southwest triggered by the long range transport process. Conversely, the affecting areas of the aerosol number concentration in the eastern Qinghai-Tibet Plateau are mainly in the domestic region, and the affecting areas with high PSCF value are relatively scattered.

References:

[1] KUNIYAL J C,GULERIA R P.The Current State of Aerosol-radiation Interactions:A Mini Review[J].Journal of Aerosol Science,2019,130:45-54.
[2] PAASONEN P,ASMI A,PETAJA T,et al.Warm-ing-Induced Increase in Aerosol Number Concentration Likely to Moderate Climate Change[J].Nature Geoscience,2013,6(6):438-442.
[3] POHLKER M L,ZHANG M H,CAMPOS BRAGA R,et al.Aitken Mode Particles as CCN in Aerosol- and Updraft-sensitive Regimes of Cloud Droplet Formation[J].Atmospheric Chemistry and Physics,2021,21(15):11723-11740.
[4] 李彦鹏,马天峰,杜胜利,等.大气生物气溶胶的源排放与源解析研究进展[J].地球科学与环境学报,2021,43(2):315-331.
LI Yan-peng,MA Tian-feng,DU Sheng-li,et al.Review on Source Emission and Source Identification of Bioaerosols in the Atmosphere[J].Journal of Earth Sciences and Environment,2021,43(2):315-331.
[5] HUANG W T K,ICKES L,TEGEN I,et al.Global Relevance of Marine Organic Aerosol as Ice Nucleating Particles[J].Atmospheric Chemistry and Phy-sics,2018,18(15):11423-11445.
[6] SHEN L J,WANG H L,CHENG M T,et al.Chemical Composition,Water Content and Size Distribution of Aerosols During Different Development Stages of Regional Haze Episodes over the North China Plain[J].Atmospheric Environment,2021,245:118020.
[7] 吴安南,黄小娟,何仁江,等.“大气十条”实施结束川南城市群秋季霾污染过程中水溶性离子特征[J].环境科学,2022,43(3):1170-1179.
WU An-nan,HUANG Xiao-juan,HE Ren-jiang,et al.Characteristics of Water-soluble Ions in an Autumn Haze Process in the Southern Sichuan Urban Agglomeration After the Implementation of China's Air Pollution Prevention and Control Action Plan[J].Environmental Science,2022,43(3):1170-1179.
[8] TRIPPETTA S,SABIA S,CAGGIANO R.Fine Ae-rosol Particles(PM1):Natural and Anthropogenic Contributions and Health Risk Assessment[J].Air Quality,Atmosphere & Health,2016,9(6):621-629.
[9] 袁 帅,王 艳,刘汝海,等.黄渤海气溶胶中砷的分布特征和季节变化[J].环境科学,2021,42(9):4151-4157.
YUAN Shuai,WANG Yan,LIU Ru-hai,et al.Distribution Characteristics and Seasonal Variations of Arsenic in Atmospheric Aerosols over the Yellow Sea and Bohai Sea[J].Environmental Science,2021,42(9):4151-4157.
[10] 缪 青,杨 倩,吴也正,等.COVID-19管控期间苏州市PM2.5中金属元素浓度变化及来源解析[J].环境科学,2022,43(6):2851-2857.
MIAO Qing,YANG Qian,WU Ye-zheng,et al.Concentration Variation and Source Analysis of Metal Elements in PM2.5 During COVID-19 Control in Su-zhou[J].Environmental Science,2022,43(6):2851-2857.
[11] ZHOU W,XU W Q,KIM H,et al.A Review of Ae-rosol Chemistry in Asia:Insights from Aerosol Mass Spectrometer Measurements[J].Environmental Science:Processes & Impacts,2020,22(8):1616-1653.
[12] 王 利,徐翠玲,徐 甫,等.2011~2020年华北平原气溶胶光学厚度时空分布特征及潜在源分析[J].地球科学与环境学报,2021,43(6):1018-1032.
WANG Li,XU Cui-ling,XU Fu,et al.Temporal and Spatial Distribution Characteristics,and Potential Source Analysis of Aerosol Optical Depth in North China Plain from 2011 to 2020[J].Journal of Earth Sciences and Environment,2021,43(6):1018-1032.
[13] ZHAO Z Z,CAO J J,SHEN Z X,et al.Aerosol Particles at a High-altitude Site on the Southeast Tibetan Plateau,China:Implications for Pollution Transport from South Asia[J].Journal of Geophysical Resear-ch:Atmospheres,2013,118(19):11360-11375.
[14] 张 玲,郑小慎.基于CALIPSO数据的沿海区域气溶胶光学特性时空特征[J].地球科学与环境学报,2021,43(6):1033-1049.
ZHANG Ling,ZHENG Xiao-shen.Spatial-temporal Variation of Aerosol Optical Properties in Coastal Region,China Based on CALIPSO Data[J].Journal of Earth Sciences and Environment,2021,43(6):1033-1049.
[15] MCMURRY P H.A Review of Atmospheric Aerosol Measurements[J].Atmospheric Environment,2000,34(12/13/14):1959-1999.
[16] WU T R,BOOR B E.Urban Aerosol Size Distributions:A Global Perspective[J].Atmospheric Chemi-stry and Physics,2021,21(11):8883-8914.
[17] 郝 囝,蔡子颖,刘敬乐,等.天津城区2019年2~3月气溶胶粒径分布特征观测分析[J].环境科学,2022,43(8):3903-3912.
HAO Jian,CAI Zi-ying,LIU Jing-le,et al.Observation Analyses of Aerosol Size Distribution Properties from February to March,2019 in Tianjin Urban Area[J].Environmental Science,2022,43(8):3903-3912.
[18] TAN Y,WANG H L,ZHU B,et al.The Interaction Between Black Carbon and Planetary Boundary Layer in the Yangtze River Delta from 2015 to 2020:Why O3 Didn't Decline so Significantly as PM2.5[J].Environmental Research,2022,214:114095.
[19] KANELLOPOULOS P G,VEROUTI E,CHRYSOCHOU E,et al.Primary and Secondary Organic Aerosol in an Urban/Industrial Site:Sources,Health Implications and the Role of Plastic Enriched Waste Burning[J].Journal of Environmental Sciences,2021,99:222-238.
[20] ENGHOFF M B,SVENSMARK H.The Role of Atmospheric Ions in Aerosol Nucleation:A Review[J].Atmospheric Chemistry and Physics,2008,8(16):4911-4923.
[21] ANGYAL A,FERENCZI Z,MANOUSAKAS M,et al.Source Identification of Fine and Coarse Aerosol During Smog Episodes in Debrecen,Hungary[J].Air Quality,Atmosphere & Health,2021,14(7):1017-1032.
[22] SEINFELD J H,PANDIS S N.Atmospheric Chemistry and Physics[M].New York:Wiley,2008.
[23] KANG H Q,ZHU B,SU J F,et al.Analysis of a Long-lasting Haze Episode in Nanjing,China[J].Atmospheric Research,2013,120/121:78-87.
[24] WANG H L,AN J L,SHEN L J,et al.Mechanism for the Formation and Microphysical Characteristics of Submicron Aerosol During Heavy Haze Pollution Episode in the Yangtze River Delta,China[J].Science of the Total Environment,2014,490:501-508.
[25] MENG X,MA Y J,CHEN R J,et al.Size-fractionated Particle Number Concentrations and Daily Mortality in a Chinese City[J].Environmental Health Perspectives,2013,121(10):1174-1178.
[26] SHEN L,CHENG Y,BAI X,et al.Vertical Profile of Aerosol Number Size Distribution During a Haze Pollution Episode in Hefei,China[J].Science of the Total Environment,2022,814:152693.
[27] 苏 捷,赵普生,陈一娜.北京地区不同天气条件下气溶胶数浓度粒径分布特征研究[J].环境科学,2016,37(4):1208-1218.
SU Jie,ZHAO Pu-sheng,CHEN Yi-na.Characteristics of Number Concentration Size Distributions of Aerosols Under Different Weather Processes in Beijing[J].Environmental Science,2016,37(4):1208-1218.
[28] 赵丽娜,徐义生,任丽红,等.武当山夏季颗粒物数浓度谱分布特征及气团来源影响研究[J].环境科学研究,2020,33(9):2020-2029.
ZHAO Li-na,XU Yi-sheng,REN Li-hong,et al.Particle Size Distribution and Air Mass Transportation Pathways at Mountain Wudang in Summer[J].Research of Environmental Sciences,2020,33(9):2020-2029.
[29] 沈利娟,王红磊,银 燕,等.泰山顶(1 534 m)夏季气溶胶粒径分布特征[J].环境科学,2019,40(5):2019-2026.
SHEN Li-juan,WANG Hong-lei,YIN Yan,et al.Size Distributions of Aerosol During the Summer at the Summit of Mountain Taishan(1 534 m)in Central East China[J].Environmental Science,2019,40(5):2019-2026.
[30] 李若羽,卞建春,唐贵谦,等.拉萨夏季大气边界层气溶胶垂直结构特征[J].大气科学,2022,46(3):666-676.
LI Ruo-yu,BIAN Jian-chun,TANG Gui-qian,et al.Vertical Structural Characteristics of Aerosols in the Atmospheric Boundary Layer During the Summer in Lhasa [J].Chinese Journal of Atmospheric Sciences,2022,46(3):666-676.
[31] CONG Z,KANG S,KAWAMURA K,et al.Carbonaceous Aerosols on the South Edge of the Tibetan Pla-teau:Concentrations,Seasonality and Sources[J].Atmospheric Chemistry and Physics,2015,15(3):1573-1584.
[32] LIU B,CONG Z Y,WANG Y S,et al.Background Aerosol over the Himalayas and Tibetan Plateau:Observed Characteristics of Aerosol Mass Loading[J].Atmospheric Chemistry and Physics,2017,17(1):449-463.
[33] LIU Y Z,HUA S,JIA R,et al.Effect of Aerosols on the Ice Cloud Properties over the Tibetan Plateau[J].Journal of Geophysical Research:Atmospheres,2019,124(16):9594-9608.
[34] 马学谦,郭学良,刘 娜,等.青藏高原中东部气溶胶特征的飞机观测[J].应用气象学报,2021,32(6):706-719.
MA Xue-qian,GUO Xue-liang,LIU Na,et al.Aircraft Measurements on Properties of Aerosols over the Central and Eastern Qinghai-Tibet Plateau[J].Journal of Applied Meteorological Science,2021,32(6):706-719.
[35] DU W,SUN Y L,XU Y S,et al.Chemical Characteri-zation of Submicron Aerosol and Particle Growth Events at a National Background Site(3 295 m a.s.l.)on the Tibetan Plateau[J].Atmospheric Chemistry and Physics,2015,15(18):10811-10824.
[36] STEIN A F,DRAXLER R R,ROLPH G D,et al.NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System [J].Bulletin of the American Meteorological Society,2015,96(12):2059-2077.
[37] ASHBAUGH L L,MALM W C,SADEH W Z.A Residence Time Probability Analysis of Sulfur Concentrations at Grand Canyon National Park[J].Atmospheric Environment,1985,19(8):1263-1270.
[38] LUCEY D,HADJIISKI L,HOPKE P K,et al.Identification of Sources of Pollutants in Precipitation Mea-sured at the Mid-Atlantic US Coast Using Potential Source Contribution Function(PSCF)[J].Atmospheric Environment,2001,35(23):3979-3986.
[39] WANG Y Q,ZHANG X Y,DRAXLER R R.Traj-Stat:GIS-based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-term Air Pollution Measurement Data[J].Environmental Modelling & Software,2009,24(8):938-939.
[40] POLISSAR A V,HOPKE P K,HARRIS J M.Source Regions for Atmospheric Aerosol Measured at Barrow,Alaska[J].Environmental Science & Technology,2001,35(21):4214-4226.
[41] 赵德龙,王 飞,刘丹彤,等.北京市海坨山冬季不同污染过程下气溶胶化学组分及其潜在来源分析[J].环境科学,2022,43(1):46-60.
ZHAO De-long,WANG Fei,LIU Dan-tong,et al.Variation Characteristics and Potential Sources of the Mt.Haituo Aerosol Chemical Composition in Different Pollution Processes During Winter in Beijing,China[J].Environmental Science,2022,43(1):46-60.
[42] 王红磊,沈利娟,施双双,等.武汉市三类不同大气污染过程下大气污染物特征及潜在源区分析[J].三峡生态环境监测,2019,4(2):27-39.
WANG Hong-lei,SHEN Li-juan,SHI Shuang-shuang,et al.Characteristics of Air Pollutants and Their Potential Source in Three Types of Pollution Episodes in Wuhan[J].Ecology and Environmental Monitoring of Three Gorges,2019,4(2):27-39.
[43] 王红磊,裴宇儇,沈利娟,等.2008~2018年武汉市BC气溶胶时间演变特征及其来源分析[J].地球与环境,2022,50(5):708-720.
WANG Hong-lei,PEI Yu-xuan,SHEN Li-juan,et al.Characteristics of the Temporal Evolution and Source Apportionment of BC Aerosols in Wuhan from 2008 to 2018[J].Earth and Environment,2022,50(5):708-720.
[44] HSU Y K,HOLSEN T M,HOPKE P K.Comparison of Hybrid Receptor Models to Locate PCB Sources in Chicago[J].Atmospheric Environment,2003,37(4):545-562.
[45] HARRIS S J,MARICQ M M.Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter [J].Journal of Aerosol Science,2001,32(6):749-764.
[46] KULMALA M,VEHKAMAKI H,PETAJA T,et al.Formation and Growth Rates of Ultrafine Atmospheric Particles:A Review of Observations [J].Journal of Aerosol Science,2004,35(2):143-176.
[47] 王红磊,朱 彬,沈利娟,等.南京市夏季大气气溶胶新粒子生成事件分析[J].环境科学,2012,33(3):701-710.
WANG Hong-lei,ZHU Bin,SHEN Li-juan,et al.Atmospheric Particle Formation Events in Nanjing During Summer 2010[J].Environmental Science,2012,33(3):701-710.
[48] WANG Z B,HU M,WU Z J,et al.Long-term Measu-rements of Particle Number Size Distributions and the Relationships with Air Mass History and Source Apportionment in the Summer of Beijing[J].Atmosphe-ric Chemistry and Physics,2013,13(20):10159-10170.
[49] 郎凤玲,闫伟奇,张 泉,等.北京大气颗粒物数浓度粒径分布特征及与气象条件的相关性[J].中国环境科学,2013,33(7):1153-1159.
LANG Feng-ling,YAN Wei-qi,ZHANG Quan,et al.Size Distribution of Atmospheric Particle Number in Beijing and Association with Meteorological Conditions [J].China Environmental Science,2013,33(7):1153-1159.
[50] GAO J,WANG T,ZHOU X H,et al.Measurement of Aerosol Number Size Distributions in the Yangtze River Delta in China:Formation and Growth of Particles Under Polluted Conditions[J].Atmospheric Environment,2009,43(4):829-836.
[51] 陈 晨,胡 敏,吴志军,等.四川乡村点新粒子生成特征及其对云凝结核数浓度的贡献[J].中国环境科学,2014,34(11):2764-2772.
CHEN Chen,HU Min,WU Zhi-jun,et al.Characteri-zation of New Particle Formation Event in the Rural Site of Sichuan Basin and Its Contribution to Cloud Condensation Nuclei[J].China Environmental Science,2014,34(11):2764-2772.
[52] 陈潇潇,金莲姬,朱靖民.黄山山底大气气溶胶数浓度日变化[J].中国环境科学,2013,33(7):1167-1173.
CHEN Xiao-xiao,JIN Lian-ji,ZHU Jing-min,et al.Daily Variation of Atmospheric Aerosol Number Concentrations at the Foot of Mount Huangshan[J].China Environmental Science,2013,33(7):1167-1173.
[53] ZHANG X R,YIN Y,LIN Z Y,et al.Observation of Aerosol Number Size Distribution and New Particle Formation at a Mountainous Site in Southeast China[J].Science of the Total Environment,2017,575:309-320.
[54] 李圆圆,王红磊,银 燕,等.新疆天山夏季气象条件对气溶胶粒径分布的影响[J].环境科学学报,2020,40(7):2375-2383.
LI Yuan-yuan,WANG Hong-lei,YIN Yan,et al.Impact of Meteorological Elements on Size Distributions of Aerosol in Summer at the Mountain Tianshan in Xinjiang[J].Acta Scientiae Circumstantiae,2020,40(7):2375-2383.
[55] 占明锦.瓦里关地区气溶胶数谱观测与研究[D].北京:中国气象科学研究院,2008.
ZHAN Ming-jin.Observation and Research of Aerosol Number Spectrum in Mt.Waliguan[D].Beijing:Chinese Academy of Meteorological Sciences,2008.
[56] 章澄昌,周文贤.大气气溶胶教程[M].北京:气象出版社,1995.
ZHANG Cheng-chang,ZHOU Wen-xian.Atmosphe-ric Aerosols Tutorial[M].Beijing:Meteorological Press,1995.
[57] 王琰玮,王 媛,张增凯,等.不同季节天津市PM2.5与O3潜在源区及传输路径分析[J].环境科学研究,2022,35(3):673-682.
WANG Yan-wei,WANG Yuan,ZHANG Zeng-kai,et al.Analysis of Potential Source Areas and Tran-sport Pathways of PM2.5 and O3 in Tianjin by Season[J].Research of Environmental Sciences,2022,35(3):673-682.

Memo

Memo:
-
Last Update: 2023-01-30