|本期目录/Table of Contents|

[1]刘丽,郭荣涛,吴和源,等.红藻石和蓝藻石概念及分类归属的综述和修订[J].地球科学与环境学报,2011,33(02):137-141.
 LIU Li,GUO Rong-tao,WU He-yuan,et al.Review and Modification of Definition and Classification of Rhodoid and Cyanoid[J].Journal of Earth Sciences and Environment,2011,33(02):137-141.
点击复制

红藻石和蓝藻石概念及分类归属的综述和修订(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第33卷
期数:
2011年第02期
页码:
137-141
栏目:
基础地质与矿产地质
出版日期:
2011-06-15

文章信息/Info

Title:
Review and Modification of Definition and Classification of Rhodoid and Cyanoid
文章编号:
1672-6561(2011)02-0137-05
作者:
刘丽郭荣涛吴和源文立坤
中国地质大学 地球科学与资源学院,北京 100083
Author(s):
LIU LiGUO Rong-taoWU He-yuanWEN Li-kun
School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
关键词:
碳酸盐岩生物碎屑红藻石蓝藻石珊瑚藻蓝细菌核形石
Keywords:
carbonate biodetritus rhodoid cyanoid coralgal cyanobacteria oncolite
分类号:
P58
DOI:
-
文献标志码:
A
摘要:
在分析和总结前人对红藻石和蓝藻石研究成果基础上,结合岩石薄片显微镜下观察实例,发现在以往碳酸盐岩颗粒分类中没有红藻石和蓝藻石的合适位置。鉴于红藻石重要的成因意义和造礁作用,有必要明确红藻石的概念和归属。珊瑚藻本身极易钙化,经生物矿化作用最终保存下来的珊瑚藻屑一直放在生物碎屑中,而红藻石是由非固着的珊瑚藻构成的钙质独立结核,因此也可以被划分到生物碎屑中。蓝藻石作为蓝细菌钙化作用的产物,同时鉴于蓝藻石的广泛存在,把钙化蓝细菌形成的核形石命名为蓝藻石,这一重要概念从提出到现在一直被使用。然而蓝绿藻概念已变更为蓝细菌,蓝藻石的形成与藻类无关,显然将其称作蓝菌石更加确切。因此,应将红藻石和蓝藻石分别归为生物碎屑和核形石当中,并用新的术语蓝菌石替代蓝藻石。其意义在于使红藻石和蓝藻石的概念及归属更为规范,并为碳酸盐岩颗粒的深入研究提供有益线索。
Abstract:
Based on the formers' research results about the rhodoid and cyanoid, there is no suitable position for them in the previous classification of carbonate particle according to the observation of rock slice with microscope. In view of the genetic significance and reef-forming role, it is necessary to give rhodoid and cyanoid a definite concept and position individually.Coralgal is easily calcified, and the finally preserved coralgal detritus is classified as biodetritus; however, rhodoid was independent calcareous nodule composed by unattached coralgal, so that it could belong to the biodetritus. Cyanoid is the product of cyanobacteria calcification, and in view of the special origin and massive development of cyanoid, the oncolite formed by calcified cyanobacteria is named cyanoid; the above concept has been in use since it was proposed. However, the concept cyanobacteria has substituted for blue-green algae, and then the above concept cyanoid is unsuitable. According to the origin and morphology of rhodoid and cyanoid, it is reasonable to classify rhodoid as bioclast and cyanoid as oncolite, and the new term cyanobacteria corallite is a substitute for cyanoid. The concept and classification of rhodoid and cyanoid could be more normative, and some important clues for the study on carbonate grains are also provided.

参考文献/References:

[1] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘,2007,14(5):222-234.
[2] 梅冥相,马永生,周丕康,等.碳酸盐沉积学导论[M].北京:地震出版社,1997.
[3] Bosellini A,Ginsburg R N.Form and Internal Structure of Recent Algal Nodules(Rhodolites)from Bermuda[J].The Journal of Geology,1971,79(6):669-682.
[4] Riding R.Cyanoliths(Cyanoids); Oncoid Formed by Calcified Cyanophytes[C]∥Peryt T M.Coated Grains.Berlin:Springer,1983:276-283.
[5] Bosence D W J.Description and Classification of Rhodoloths(Rhodoids,Rhodolites)[C]∥Peryt T M.Coated Grains.Berlin:Springer,1983:218-224.
[6] 周传明,薛耀松.贵州瓮安上震旦统陡山沱组磷质似红藻石[J].微体古生物学报,1999,16(3):275-280.
[7] Peryt T M.Vadoids[C]∥Peryt T M.Coated Grains.Berlin:Springer,1983:437-449.
[8] Piller W E,Rasser M.Rhodolith Formation Induced by Reef Erosion in the Red Sea,Egypt[J].Coral Reefs,1996,15(3):191-198.
[9] Bosence D W J.The Occurrence and Ecology of Recent Rhodoliths:a Review[C]∥Peryt T M.Coated Grains.Berlin:Springer,1983:225-242.
[10] Wehramann A,Freiwald A,Zankl H.Formation of Cold-temperate Water Multispecies Rhodoliths in Intertidal Gravel Pools from Northern Brittany,France[J].Sencken-bergiana Maritima,1995,26:51-57.
[11] 张水昌,张宝民,边立曾,等.河北张家口下花园青白口系下马岭组“红藻石”的发现[J].微体古生物学报,2005,22(2):121-126.
[12] Flügel E.Microfacies of Carbonate Rocks:Analysis,Interpretation and Application[M].Heidelberg:Springer,2004.
[13] 梅冥相.从凝块石概念的演变论微生物碳酸盐岩的研究进展[J].地质科技情报,2007,26(6):1-9.
[14] 曹瑞骥,袁训来.中国叠层石研究的历史和现状[J].微体古生物学报,2003,20(1):5-14.
[15] 陈留勤.臼齿构造主要成因模式及时空分布意义[J].地球科学与环境学报,2009,31(3):245-253.
[16] Touir J,Soussi M,Troudi H.Polyphased Dolomitization of a Shoal-rimmed Carbonate Platform:Example from the Middle Turonian Bireno Dolomites of Central Tunisia[J].Cretaceous Research,2009,30(3):785-804.
[17] Miall A D.In Defense of Facies Classifications and Models[J].Journal of Sedimentary Research,1999,69(1):2-5.
[18] 戴永定,李菊英,蒋光协,等.生物矿物学[M].北京:石油工业出版社,1994.
[19] 王正瑛,张锦泉,王文才,等.沉积岩结构构造图册[M].北京:地质出版社,1988.
[20] 许 红,王玉净,蔡 峰,等.西沙中新世生物地层和藻类的造礁作用与生物礁演变特征[M].北京:科学出版社,1999.
[21] 陈国威.南海生物礁及礁油气藏形成的基本特征[J].海洋地质动态,2003,19(7):32-37.
[22] Pratt B R.Calcification of Cyanobacterial Filaments:Girvanella and the Origin of Lower Paleozoic Lime Mud[J].Geology,2001,29(9):763-766.
[23] 边立曾,黄志诚.核形石的分类及生态研究[J].古生物学报,1988,27(5):544-552.
[24] Krumbein W E.Cyanobakterien Bakterien Oder Algen,Oldenburger Symposium Uber Cyanobakterien[M].Oldenbury:Littman-Druck,1979.
[25] Rippka R E,Deruelles J,Waterbury J B,et al.Generic Assignments,Strain Histories and Properties of Pure Cultures of Cyanobakteria[J].Journal of General Microbiology,1979,111(1):1-61.
[26] 杨玉芳,钟建华,曾石岐,等.松辽盆地早白垩世青山口组核形石的特征及其环境意义[J].地质学报,2009,83(4):558-569.
[27] 李熙哲,管守锐,谢庆宾,等.平邑盆地下第三系官中段核形石成因分析[J].岩石学报,2000,16(2):261-268.
[28] Logan B W,Rezak R,Ginsburg R N.Classification and Environmental Significance of Algal Stromatolites[J].The Journal of Geology,1964,72(1):68-83.
[29] Fagerstrom J A.The Evolution of Reef Communities[M].New York:John Wiley and Sons,1987.
[30] 范嘉松,吴亚生.从塔北隆起奥陶纪钙藻化石探讨奥陶纪的古环境[J].微体古生物学报,2004,21(3):251-266.
[31] 张海军,王训练,夏国英,等.陕西镇安西口石炭系/二叠系界线剖面碳酸盐岩微相特征与沉积环境的研究[J].现代地质,2003,17(4):387-394.
[32] 周志澄.云南永德鱼塘寨石炭系—二叠系界线剖面的生物地层学及沉积环境[J].地层学杂志,1995,19(4):250-258.

相似文献/References:

[1]冯冲,邹华耀,郭彤楼.四川盆地晚二叠世—早三叠世沉积演化及其对天然气富集的意义[J].地球科学与环境学报,2015,37(04):44.
 FENG Chong,ZOU Hua-yao,GUO Tong-lou.Late Permian-Early Triassic Sedimentary Evolution in Sichuan Basin and Its Significance on Gas Accumulation[J].Journal of Earth Sciences and Environment,2015,37(02):44.
[2]狄贵东,彭更新,庞雄奇,等.深层碳酸盐岩地震储层预测——以塔里木盆地哈得逊区块一间房组为例[J].地球科学与环境学报,2016,38(05):715.
 DI Gui-dong,PENG Geng-xin,PANG Xiong-qi,et al.Seismic Reservoir Prediction of Deep Carbonatite—A Case Study of Yijianfang Formation in Hadexun Zone of Tarim Basin[J].Journal of Earth Sciences and Environment,2016,38(02):715.
[3]金翔霖,孟昌忠,冷成彪,等.贵州云炉河坝地区铅锌矿床元素地球化学特征、碳氧同位素组成及其地质意义[J].地球科学与环境学报,2016,38(06):778.
 JIN Xiang-lin,MENG Chang-zhong,LENG Cheng-biao,et al.Element Geochemical Characteristics and C-O Isotopic Compositions of Pb-Zn Deposit in Yunluheba Area of Guizhou and Their Geological Implications[J].Journal of Earth Sciences and Environment,2016,38(02):778.
[4]王振宇,吴 丽,张云峰,等.塔中上奥陶统方解石胶结物类型及其形成环境[J].地球科学与环境学报,2009,31(03):265.
 WANG Zhen-yu,WU Li,ZHANG Yun-feng,et al.Study on Category and Forming Environment of Upper Ordovician Carbonate Rock Calcite Cement in Tazhong District[J].Journal of Earth Sciences and Environment,2009,31(02):265.
[5]刘克奇,蔡忠贤,张淑贞,等.塔中地区奥陶系碳酸盐岩不整合带的结构[J].地球科学与环境学报,2006,28(02):41.
 LIU Ke-qi,CA I Zhong-xian,ZHANG Shu-zhen,et al.Structure of Ordovician Carbonate Unconformity Zone in Tazhong Area[J].Journal of Earth Sciences and Environment,2006,28(02):41.

备注/Memo

备注/Memo:
收稿日期:2010-09-21
基金项目: 国家自然科学基金项目(40472065; 49802012)
作者简介: 刘 丽(1984-),女,辽宁辽阳人,理学硕士研究生,从事沉积学研究。E-mail:tliuliy@sina.com

更新日期/Last Update: 2011-06-20