|本期目录/Table of Contents|

[1]许模,王迪,蒋良文,等.岩土体导热系数研究进展[J].地球科学与环境学报,2011,33(04):421-427,433.
 XU Mo,WANG Di,JIANG Liang-wen,et al.Review on Thermal Conductivity Coefficient of Rock and Soil Mass[J].Journal of Earth Sciences and Environment,2011,33(04):421-427,433.
点击复制

岩土体导热系数研究进展(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第33卷
期数:
2011年第04期
页码:
421-427,433
栏目:
地质工程
出版日期:
2011-12-15

文章信息/Info

Title:
Review on Thermal Conductivity Coefficient of Rock and Soil Mass
文章编号:
1672-6561(2011)04-0421-07
作者:
许模1王迪2蒋良文3漆继红1
1.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059; 2.福州市勘测院,福建福州350003;3.中铁二院工程集团有限责任公司,四川成都610031
Author(s):
XU Mo1WANG Di2JIANG Liang-wen3QI Ji-hong1
1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 2. Fuzhou Investigation and Surveying Institute, Fuzhou 350003, Fujian, China; 3. China Railway Eryuan Enginee
关键词:
岩土体导热系数受控因素测定方法热源模型
Keywords:
rock and soil mass thermal conductivity coefficient controlled factor measuring method heat source model
分类号:
P313
DOI:
-
文献标志码:
A
摘要:
岩土体导热系数在与地热有关的地质基础研究和生产应用中有重要作用。首先介绍了导热系数的概念,然后分析了导热系数的受控因素,最后探讨了导热系数的测定方法。导热系数的受控因素包括地层岩性、孔隙率、含水率、温度以及各向异性。导热系数随地层岩性从大到小排列为海相碳酸盐岩、陆相碎屑岩、火成岩,变质岩导热系数与母岩和变质程度有关;同种岩层的导热系数随沉积过程延续或深度增加而增大;含水率对软弱岩石的导热系数影响较大,导热系数随含水率增大而增大,对孔隙度较大的岩层需进行饱水校正;不同岩性的导热系数随温度的变化较复杂,在应用中需结合实际地层考虑;由于结构面的存在,岩体的导热系数存在各向异性。导热系数的测定方法包括现场测试法、室内测试法、组分类型辨别法以及利用P波速度估算等。利用现场数据求解导热系数时常使用线热源模型和柱热源模型;室内测试法包括稳态测试法和非稳态测试法,分别应用于中低导热系数材料和高导热系数材料;对于组分类型辨别法,平行板式相分布的物体导热系数是各向不等的,热传导方向与平行板平面平行和垂直时分别具有最小和最大总体导热系数;对地下无法直接测量的地质单元,可利用P波速度估算导热系数。要得到准确的导热系数,须基于岩土体的导热系数范围和样品特征选取正确的测定方法。
Abstract:
Thermal conductivity coefficient of rock and soil mass is important on the geothermic fundamental research and application. Concept, controlled factors and measuring methods of thermal conductivity coefficient were introduced. Controlled factors included stratum lithology, porosity, water content, temperature and anisotropy. Thermal conductivity coefficient ranked by descending order with stratum lithology was marine carbonate, continental clastic rock and igneous rock, and thermal conductivity coefficient of metamorphic rock was related with the parent rock and metamorphoses degree. Thermal conductivity coefficient increased when the sedimentation and depth increased. Water content had significant influence on thermal conductivity coefficient of weak rock; thermal conductivity coefficient increased with the increase of porosity; the stratum with big porosity should be checked with saturation. Thermal conductivity coefficient of different lithology was complex when the temperature changed, so it should be concluded according to the actual stratum in application. Thermal conductivity coefficient was anisotropic because of the structural plane. Measuring methods of thermal conductivity coefficient included field test, indoor test, component types distinguishing, P-wave velocity estimation, etc. Thermal conductivity coefficient with field test data was usually calculated by linear and columnar source models. Indoor test included steady and unsteady measuring methods, which were applied in the materials with low-middle and high thermal conductivity coefficient respectively. For component types distinguishing method, thermal conductivity coefficient of the parallel plate phase distribution material was anisotropic; thermal conductivity coefficient was minimum when the direction of heat exchange was parallel to parallel plate and maximum when the direction was vertical to parallel plate. For the geological unit which can not be directly measured, P-wave velocity estimation was used to calculate thermal conductivity coefficient. In order to obtain accurate thermal conductivity coefficient, optimal measuring method should be selected based on the characteristics of samples and the extent of thermal conductivity coefficient of rock and soil mass.

参考文献/References:

[1] 胡平放,孙启明,於仲义,等.地源热泵地埋管换热量与岩土热物性的测试[J].煤气与热力,2008,28(8):1-4.
[2] 牛富俊,马 巍,吴青柏.青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J].地球科学与环境学报,2011,33(2):196-206.
[3] 靳德武,牛富俊,陈志新,等.冻土斜坡模型试验相似分析[J].地球科学与环境学报,2004,26(1):29-32.
[4] 刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J].矿物学报,2001,21(3):541-543.
[5] 汤其建,张国枢,陈清华.松散煤体导热系数影响因素分析[J].江西煤炭科技,2006(4):24-26.
[6] 孙斌祥,徐学祖,赖远明,等.块石路堤、护坡导热系数的实验研究[J].中国公路学报,2003,16(3):7-11.
[7] 彭担任,程普军.煤与岩石的导热性能及热导率研究[J].煤,1999,8(4):13-15.
[8] Frie D E.Thermal Conduction Contribution to Heat Transfer at Contacts[J].Thermal Conductivity,1969(2):197-199.
[9] 陶士振,刘德良.郯庐断裂带及邻区地热场特征、温泉形成因素及气体组成[J].天然气工业,2000,20(6):42-47.
[10] 王社教,胡圣标,汪集旸.准噶尔盆地热流及地温场特征[J].地球物理学报,2000,43(6):771-779.
[11] 王永新,冯殿生,汪集旸,等.辽河盆地东部凹陷现今地温场及热历史的研究[J].地球物理学报,2003,46(2):197-202.
[12] 潘树仁,丁致中.苏南地区地热地质特征[J].江苏地质,2001,25(4):228-233.
[13] 王良书,李 成,施央申,等.下扬子区地温场和大地热流密度分布[J].地球物理学报,1995,38(4):469-476.
[14] 卢庆治,胡圣标,郭彤楼,等.川东北地区异常高压形成的地温场背景[J].地球物理学报,2005,48(5):1110-1116.
[15] 刘建军,刘海蕾.岩石热物理性质测试与分析[J].西部探矿工程,2009(4):144-148.
[16] 朱国平,刘晓东,罗太安.含水率和添加剂对膨润土导热性能影响的研究[J].东华理工学院学报,2007,30(1):60-63.
[17] 汪集旸,胡圣标,杨文采.中国大陆科学钻探先导孔地热测量[J].科学通报,2001,46(10):847-850.
[18] 欧新功,金振民,王 璐,等.中国大陆科学钻探主孔100~2 000 m岩石热导率及其各向异性:对研究俯冲带热结构的启示[J].岩石学报,2004,20(1):109-118.
[19] 吴 耀,金振民,欧新功,等.中国大陆科学钻探(CCSD)主孔地区岩石圈热结构[J].岩石学报,2005,21(2):439-450.
[20] 邱楠生.中国西北部盆地岩石热导率和生热率特征[J].地质科学,2002,37(2):196-206.
[21] 栾锡武,高德章,喻普之,等.我国东海陆架地区新生代地层的热导率[J].海洋与湖沼,2002,33(2):151-159.
[22] 邱楠生,王绪龙,杨海波,等.准噶尔盆地地温分布特征[J].地质科学,2001,36(3):350-358.
[23] 邱楠生,顾先觉,丁丽华,等.柴达木盆地西部新生代的构造-热演化研究[J].地质科学,2000,35(4):456-464.
[24] 袁玉松,米立军,张功成,等.沉积盆地地温梯度研究中应注意的问题[J].地质论评,2009,55(4):531-535.
[25] 刘为民,何 平,张 钊.土体导热系数的评价与计算[J].冰川冻土,2002,24(6):770-773.
[26] 温 智,盛 煜,马 巍,等.青藏高原北麓河地区原状多年冻土导热系数的试验研究[J].冰川冻土,2005,27(2):182-187.
[27] 李国桦.柴达木盆地大地热流特征及地壳热结构分析[D].北京:中国科学院地质研究所,1992.
[28] 冯昌格,刘绍文,王良书,等.塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系[J].地球科学——中国地质大学学报,2010,35(4):645-656.
[29] 王 钧,汪缉安,沈继英,等.塔里木盆地的大地热流[J].地球科学——中国地质大学学报,1995,20(4):399-404.
[30] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
[31] Carlsaw H S,Jaeger J C.Conduction of Heat in Solids [M].New York: Oxford University Press,1959.
[32] 张延军,于子望,黄 芮,等.岩土热导率测量和温度影响研究[J].岩土工程学报,2009,31(2):213-217.
[33] 张国枢,戴广龙.煤炭自燃理论与防治实践[M].北京:煤炭工业出版社,2002.
[34] 陆 森,任图生.不同温度下的土壤热导率模拟[J].农业工程学报,2009,25(7):13-18.
[35] 焦安军,厉彦忠,张 瑞,等.稳态及非稳态传热条件下膨胀珍珠岩绝热性能的研究[J].低温工程,2001(2):48-52.
[36] 闫全英,于建国,尚德库,等.玄武岩料床导热系数的计算方法和实验研究[J].河北工业大学学报,2000,29(5):29-32.
[37] 赵永信,杨淑贞,张文仁.岩石热导率的温压实验及分析[J].地球物理学进展,1995,10(1):104-113.
[38] 宋春节,刘立芳,丁良士.地埋管单位埋深加热功率的变化对大地有效导热系数测量的影响[J].制冷与空调,2010,10(2):26-30.
[39] 高 青,余传辉.地下土壤导热系数简化柱热源模型确定方法[J].太阳能学报,2007,28(12):1402-1406.
[40] Ingersoll L R,Plass H J.Theory of the Ground Pipe Heat Source for the Heatpump[J].ASHVE Transactions,1948,25(47):339-348.
[41] 杨卫波,施明恒,陈振乾.基于解析法的地下岩土热物性现场测试方法的探讨[J].建筑科学,2009,25(8):60-64.
[42] Ingersoll L R,Zobel O J,Ingersoll A C.Heat Conduction with Engineering, Geological and Other Applications [M].New York:McGraw Hill,1954.
[43] 刘正华,陈汝东,李 芃,等.土壤源热泵系统埋地换热器换热性能研究[J].流体机械,2007,35(3):63-67.
[44] 张于峰,陈成敏,聂金哲,等.U型埋管系统地下传热数值模拟[J].天津大学学报,2010,43(8):717-721.
[45] 王余富,谢永利.岩石导热系数确定的一种新方法[J].低温建筑技术,2009(9):11-12.
[46] 闵 凯,刘 斌,温 广.导热系数测量方法与应用分析[J].保鲜与加工,2005,5(6):35-38.
[47] 沈珍瑶,李国鼎,李书绅.高压实膨润土的导热性能[J].大坝观测与土工测试,1998,22(3):39-40.
[48] 彭担任,王占国,孙新刚,等.煤层岩体中声波速度与导热系数的关系[J].矿业安全与环保,1999(1):11-13.
[49] 欧新功,金振民,夏 斌,等.利用超高压变质岩的P波速度估算地下岩石的热导率[J].地球科学——中国地质大学学报,2006,31(4):564-568.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2011-04-08
基金项目: 铁道部科技研究开发计划项目(2008G027-A)
作者简介: 许 模(1963-),男,重庆人,教授,博士研究生导师,工学博士,从事地质工程、水文地质等研究。E-mail:xm@cdut.edu.cn

更新日期/Last Update: 2011-12-20