|本期目录/Table of Contents|

[1]杨彦峰,符超峰*,徐新文,等.青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立[J].地球科学与环境学报,2021,43(04):710-723.[doi:10.19814/j.jese.2020.10022]
 YANG Yan-feng,FU Chao-feng*,XU Xin-wen,et al.Establishment of Absolute Astronomical Time Scale of Late Miocene Strata in Jianzha Basin, the Northeastern Margin of Tibetan Plateau, China[J].Journal of Earth Sciences and Environment,2021,43(04):710-723.[doi:10.19814/j.jese.2020.10022]
点击复制

青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第04期
页码:
710-723
栏目:
基础地质与矿产地质
出版日期:
2021-07-15

文章信息/Info

Title:
Establishment of Absolute Astronomical Time Scale of Late Miocene Strata in Jianzha Basin, the Northeastern Margin of Tibetan Plateau, China
文章编号:
1672-6561(2021)04-0710-14
作者:
杨彦峰1符超峰12*徐新文3王 凤1孟媛媛14强小科2
(1. 长安大学 地球科学与资源学院,陕西 西安 710054; 2. 中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,陕西 西安 710061; 3. 西北大学 城市与环境学院,陕西 西安 710127; 4. 西北大学 地质学系,陕西 西安 710069)
Author(s):
YANG Yan-feng1 FU Chao-feng12* XU Xin-wen3 WANG Feng1 MENG Yuan-yuan14 QIANG Xiao-ke2
(1. School of Earth Science and Resources, Chang'an University, Xi'an 710054, Shaanxi, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, Shaanxi, China; 3. College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, Shaanxi, China; 4. Department of Geology, Northwest University, Xi'an 710069, Shaanxi, China)
关键词:
旋回地层学 天文年代标尺 天文调谐 频谱分析 地球轨道参数 沉积旋回 青藏高原
Keywords:
cyclostratigraphy astronomical time scale astronomical tuning spectrum analysis earth orbital parameter sedimentary cycle Tibetan Plateau
分类号:
P539; P534.62+1
DOI:
10.19814/j.jese.2020.10022
文献标志码:
A
摘要:
位于青藏高原东北缘的尖扎盆地沉积了巨厚的新生代风成沉积物,夹杂有河湖相沉积层段,已进行了高分辨率磁性地层学和环境磁学研究,是旋回地层学研究的良好剖面。以尖扎盆地加让剖面3~361 m晚中新世沉积地层为研究对象,通过系统的旋回地层学研究,旨在建立加让剖面的绝对天文年代标尺,提取尖扎盆地中蕴含影响古气候演化的地球轨道参数的主导周期,为进一步进行海陆对比和深入研究古气候环境演化提供基础数据。加让剖面古气候替代性指标频率磁化率(χ fd)数据序列深度域频谱分析表明:3~361 m层段存在稳定的代表长偏心率周期的26 m沉积旋回,代表其他地球轨道参数周期的沉积旋回也有所体现,但并不稳定。基于识别出的沉积旋回,利用稳定的405 ka长偏心率周期对3~361 m深度域频率磁化率数据序列进行天文调谐,结合加让剖面磁性地层年代框架,建立了11.758~5.890 Ma的绝对天文年代标尺。经过天文调谐的频率磁化率数据序列时间域与古地磁年代结果吻合较好,表明建立的天文年代标尺是可靠的。加让剖面频率磁化率与深海氧同位素记录频谱分析显示,在约7.2 Ma存在明显的周期转变。这一记录表明,东亚夏季风在7.2 Ma之前由41 ka的斜率周期主导,在7.2 Ma之后受控于100 ka的短偏心率周期。
Abstract:
The Jianzha Basin is located in the northeastern margin of Tibetan Plateau, and contains a thick sequence of Cenozoic sediments, which is composed of the sequence of eolian red clay with a bit part fluviolacustrine deposits. The Jiarang section in Jianzha Basin is an ideal section for cyclostratigraphy, because of its high resolution on magnetostratigraphy and environmental magnetism. Based on the systematic cyclostratigraphy of 3-361 m sedimentary strata of Late Miocene in Jiarang section, the absolute astronomical time scale of Jiarang section was established, and the dominant period of earth orbital parameters affecting the paleoclimate evolution in Jianzha Basin was extracted, in order to provide basic data for the further comparison between land and sea, and the paleoclimatic and environmental evolution. The result of spectrum analyses of frequency-dependent magnetic susceptibility(χ fd)in depth domain shows that there is a stable 26 m sedimentary cycle representing long eccentricity period in the 3-361 m interval, and the sedimentary cycles representing other astronomical orbital periods are also present, but not stable. Based on the identified sedimentary cycles, the long eccentricity period was used to tune frequency-dependent magnetic susceptibility data series in depth domain of 3-361 m. Combined with the magnetostratigraphic chronological framework of Jiarang section, the absolute astronomical time scale of 11.758-5.890 Ma was established. The astronomical tuning for frequency-dependent magnetic susceptibility data series in time domain is consistent with the paleomagnetic age, which indicates that the astronomical time scale is reliable. The spectrum analyses for frequency-dependent magnetic susceptibility and marine oxygen isotope records show that there are obvious periodic shifts in about 7.2 Ma. This record reveals that the East Asian summer monsoon(EASM)is dominated by 41 ka obliquity period before 7.2 Ma, and controlled by 100 ka short eccentricity period after 7.2 Ma.

参考文献/References:

[1] ZACHOS J,PAGANI M,SLOAN L,et al.Trends,Rhythms,and Aberrations in Global Climate 65 Ma to Present[J].Science,2001,292:686-693. [2] HIGGINS J A,SCHRAG D P.Records of Neogene Seawater Chemistry and Diagenesis in Deep-sea Carbonate Sediments and Pore Fluids[J].Earth and Pla-netary Science Letters,2012,357/358:386-396. [3] MIAO Y F,HERRMANN M,WU F L,et al.What Controlled Mid-Late Miocene Long-term Aridification in Central Asia?-Global Cooling or Tibetan Plateau Uplift:A Review[J].Earth-science Reviews,2012,112(3/4):155-172. [4] GARZIONE C N.Surface Uplift of Tibet and Cenozoic Global Cooling[J].Geology,2008,36(12):1003-1004. [5] 安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究,2006,26(5):678-693. AN Zhi-sheng,ZHANG Pei-zhen,WANG Er-qi,et al.Changes of the Monsoon-arid Environment in China and Growth of the Tibetan Plateau Since the Miocene[J].Quaternary Sciences,2006,26(5):678-693. [6] AN Z S,KUTZBACH J E,PRELL W L,et al.Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau Since Late Miocene Times[J].Nature,2001,411:62-66. [7] HOLBOURN A E,KUHNT W,CLEMENS S C,et al.Late Miocene Climate Cooling and Intensification of Southeast Asian Winter Monsoon[J].Nature Commu-nications,2018,9:1584. [8] 靳华龙,万世明.新生代气候变冷机制研究进展[J].海洋地质与第四纪地质,2019,39(5):71-86. JIN Hua-long,WAN Shi-ming.The Mechanism of Cenozoic Cooling:A Review of Research Progress[J].Marine Geology and Quaternary Geology,2019,39(5):71-86. [9] 鹿化煜,郭正堂.晚新生代东亚气候变化:进展与问题[J].中国科学:地球科学,2013,43(12):1907-1918. LU Hua-yu,GUO Zheng-tang.Evolution of the Monsoon and Dry Climate in East Asia During Late Cenozoic:A Review[J].Science China:Earth Sciences,2013,43(12):1907-1918. [10] PISIAS N G,IMBRIE J.Orbital Geometry,CO2,and Pleistocene Climate[J].Oceanus,1986,29(4):43-49. [11] LI J J,FENG Z D,TANG L Y.Late Quaternary Monsoon Patterns on the Loess Plateau of China[J].Earth Surface Processes and Landforms,1988,13(2):125-135. [12] 李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1998,43(15):1569-1574. LI Ji-jun,FANG Xiao-min.Study on Uplift of the Tibetan Plateau and Environmental Changes[J].Chinese Science Bulletin,1998,43(15):1569-1574. [13] 鹿化煜,胡 挺,王先彦.1 100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析[J].高校地质学报,2009,15(2):149-158. LU Hua-yu,HU Ting,WANG Xian-yan.Cycles and Forcing Mechanism of Wet-dry Variations in North China During the Past 11.0 Million Years[J].Geological Journal of China Universities,2009,15(2):149-158. [14] HINNOV L A,OGG J G.Cyclostratigraphy and the Astronomical Time Scale[J].Stratigraphy,2007,4(2):239-251. [15] NIE J S.The Plio-Pleistocene 405-kyr Climate Cycles[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,510:26-30. [16] 龚一鸣,杜远生,童金南,等.旋回地层学:地层学解读时间的第三里程碑[J].地球科学,2008,33(4):443-457. GONG Yi-ming,DU Yuan-sheng,TONG Jin-nan,et al.Cyclostratigraphy:The Third Milestone of Stratigraphy in Understanding Time[J].Earth Science,2008,33(4):443-457. [17] LI T,LIU F,ABELS H A,et al.Continued Obliquity Pacing of East Asian Summer Precipitation After the Mid-Pleistocene Transition[J].Earth and Planetary Science Letters,2017,457:181-190. [18] AO H,DEKKERS M J,XIAO G Q,et al.Different Orbital Rhythms in the Asian Summer Monsoon Records from North and South China During the Pleistocene[J].Global and Planetary Change,2012,80/81:51-60. [19] SUN Y B,CIEMENS S C,AN Z S,et al.Astronomical Timescale and Palaeoclimatic Implication of Stacked 3.6-Myr Monsoon Records from the Chinese Loess Plateau[J].Quaternary Science Reviews,2005,25(1/2):33-48. [20] ANWAR T,KRAVCHINSKY V A,ZHANG R.Magneto- and Cyclostratigraphy in the Red Clay Sequence:New Age Model and Paleoclimatic Implication for the Eastern Chinese Loess Plateau[J].Journal of Geophysical Research:Solid Earth,2015,120(10):6758-6770. [21] NIE J S,KING J W,FANG X M.Enhancement Mechanisms of Magnetic Susceptibility in the Chinese Red-clay Sequence[J].Geophysical Research Letters,2007,34(19):255-268. [22] CHENG H,EDWARDS R L,SINHA A,et al.The Asian Monsoon over the Past 640 000 Years and Ice Age Terminations[J].Nature,2016,534:640-646. [23] WANG Y J,CHENG H,EDWARDS R L,et al.Millennial- and Orbital-scale Changes in the East Asian Monsoon over the Past 224 000 Years[J].Nature,2008,451:1090-1093. [24] NIE J S,GARZIONE C,SU Q,et al.Dominant 100 000-year Precipitation Cyclicity in a Late Miocene Lake from Northeast Tibet[J].Science Advances,2017,3(3):e1600762. [25] 王治祥.中新世以来轨道尺度的古气候变化在青藏高原东北缘湖盆记录中的沉积响应[D].武汉:中国地质大学,2019. WANG Zhi-xiang.Sedimentary Sequency Response to Orbital Forcing the Paleoclimatic Changes in the Lacustrine Records of the Northeastern Tibetan Plateau Since the Miocene[D].Wuhan:China University of Geosciences,2019. [26] WANG Z X,SHEN Y J,LICHT A,et al.Cyclostrati-graphy and Magnetostratigraphy of the Middle Miocene Ashigong Formation,Guide Basin,China,and Its Implications for the Paleoclimatic Evolution of NE Tibet[J].Paleoceanography and Paleoclimatology,2018,33(10):1066-1085. [27] WANG Z X,HUANG C J,LICHT A,et al.Middle to Late Miocene Eccentricity Forcing on Lake Expansion in NE Tibet[J].Geophysical Research Letters,2019,46(12):6926-6935. [28] HEITMANN E O,JI S C,NIE J S,et al.Orbitally-paced Variations of Water Availability in the SE Asian Monsoon Region Following the Miocene Climate Transition[J].Earth and Planetary Science Letters,2017,474:272-282. [29] FU C F,QIANG X K,XU X W,et al.Late Miocene Magnetostratigraphy of Jianzha Basin in the Northeastern Margin of the Tibetan Plateau and Changes in the East Asian Summer Monsoon[J].Geological Journal,2018,53(S1):282-292. [30] FANG X M,ZHANG W L,MENG Q Q.High-resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau,Qinghai Province,China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau[J].Earth and Planetary Science Letters,2007,258(1/2):293-306. [31] FANG X M,YAN M D,VAN DER VOO R,et al.Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau:Evidence from High-resolution Magneto-stratigraphy of the Guide Basin,Qinghai Province,China[J].Geological Society of America Bulletin,2005,117(9/10):1208-1225. [32] 李吉均.青藏高原隆升与晚新生代环境变化[J].兰州大学学报(自然科学版),2013,49(2):154-159. LI Ji-jun.Uplift of the Tibetan Plateau and Environmental Changes in Late Cenozoic[J].Journal of Lanzhou University(Natural Sciences),2013,49(2):154-159. [33] 张克信,王国灿,陈奋宁,等.青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J].地球科学,2007,32(5):583-597. ZHANG Ke-xin,WANG Guo-can,CHEN Fen-ning,et al.Coupling Between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene[J].Earth Science,2007,32(5):583-597. [34] 方小敏,宋春晖,戴 霜,等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J].地学前缘,2007,14(1):230-242. FANG Xiao-min,SONG Chun-hui,DAI Shuang,et al.Cenozoic Deformation and Uplift of the NE Qingha-Tibet Plateau:Evidence from High-resolution Magnetostratigraphy and Basin Evolution[J].Earth Science Frontiers,2007,14(1):230-242. [35] 何 煦.黄河沿岸少数民族地区生态景观保护与改善的设计研究[D].西安:西安建筑科技大学,2013. HE Xu.Design of the Protection and Improvement of the Yellow River Coastal Minority Areas of Ecological Landscape[D].Xi'an:Xi'an University of Architecture and Technology,2013. [36] 王 祎,符超峰,宋友桂,等.青藏高原东北缘尖扎盆地沉积物矿物特征及其古环境意义[J].地球科学与环境学报,2020,42(1):86-98. WANG Yi,FU Chao-feng.SONG You-gui,et al.Mi-neral Characteristics of Sediment in Jianzha Basin,the Northeastern Margin of Qinghai-Tibet Plateau,China and Their Paleo-environmental Significance[J].Journal of Earth Sciences and Environment,2020,42(1):86-98. [37] 席建建,符超峰,孟媛媛,等.青藏高原东北缘尖扎盆地碳酸盐含量及其古环境意义[J].第四纪研究,2018,38(1):107-117. XI Jian-jian,FU Chao-feng,MENG Yuan-yuan,et al.Carbonate Content of the Jianzha Basin in Northeastern Margin of the Tibet Plateau and Paleoclimatic Significance[J].Quaternary Sciences,2018,38(1):107-117. [38] 左 俊.青藏高原东北缘尖扎盆地黏土矿物特征及其古环境意义[D].西安:长安大学,2016. ZUO Jun.Clay Mineral Characteristics of the Jianzha Basin in Northeastern Margin of the Tibet Plateau,and Its Environment Significance[D].Xi'an:Chang'an University,2016. [39] 吴怀春,房 强,张世红,等.新生代米兰科维奇旋回与天文地质年代表[J].第四纪研究,2016,36(5):1055-1074. WU Huai-chun,FANG Qiang,ZHANG Shi-hong,et al.Cenozoic Milankovitch Cycles and Astronomical Time Scale[J].Quaternary Sciences,2016,36(5):1055-1074. [40] 吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前缘,2008,15(4):159-169. WU Huai-chun,ZHANG Shi-hong,HUANG Qing-hua.Establishment of Floating Astronomical Time Scale for the Terrestrial Late Cretaceous Qingshan-kou Formation in the Songliao Basin of Northeast China[J].Earth Science Frontiers,2008,15(4):159-169. [41] 陈代钊.旋回地层:一个正在发展中的理论[J].第四纪研究,2000,20(2):186. CHEN Dai-zhao.Cyclostratigraphy:A Developing Theory[J].Quaternary Sciences,2000,20(2):186. [42] HINNOV L A.Cyclostratigraphy and Its Revolutionizing Applications in the Earth and Planetary Sciences[J].Geological Society of America Bulletin,2013,125(11/12):1703-1734. [43] 吴怀春,张世红,冯庆来,等.旋回地层学理论基础、研究进展和展望[J].地球科学,2011,36(3):409-428. WU Huai-chun,ZHANG Shi-hong,FENG Qing-lai,et al.Theoretical Basis,Research Advancement and Prospects of Cyclostratigraphy[J].Earth Science,2011,36(3):409-428. [44] STRASSER A H,HECKEL P H.Cyclostratigraphy Concepts,Definitions,and Applications[J].Newsletters on Stratigraphy,2007,42(2):75-114. [45] 符超峰,宋友桂,强小科,等.环境磁学在古气候环境研究中的回顾与展望[J].地球科学与环境学报,2009,31(3):312-322. FU Chao-feng,SONG You-gui,QIANG Xiao-ke,et al.Environmental Magnetism and Its Application Progress in Paleoclimatic and Paleoenvironmental Changes[J].Journal of Earth Sciences and Environment,2009,31(3):312-322. [46] EVANS M E,HELLER F.Environmental Magne-tism:Principles and Applications of Enviromagnetics[M].San Diego:Academic Press,2003. [47] 刘青松,邓成龙.磁化率及其环境意义[J].地球物理学报,2009,52(4):1041-1048. LIU Qing-song,DENG Cheng-long.Magnetic Susceptibility and Its Environmental Significances[J].Chinese Journal of Geophysics,2009,52(4):1041-1048. [48] 邓成龙,刘青松,潘永信,等.中国黄土环境磁学[J].第四纪研究,2007,27(2):193-209. DENG Cheng-long,LIU Qing-song,PAN Yong-xin,et al.Environmental Magnetism of Chinese Loess-pa-leosol Sequences[J].Quaternary Sciences,2007,27(2):193-209. [49] LI M S,HUANG C J,OGG J,et al.Paleoclimate Pro-xies for Cyclostratigraphy:Comparative Analysis Us-ing a Lower Triassic Marine Section in South China[J].Earth-science Reviews,2019,189:125-146. [50] WU H C,ZHANG S H,HINNOV L A,et al.Time-Calibrated Milankovitch Cycles for the Late Permian[J].Nature Communications,2013,4:2452. [51] WU H C,ZHANG S H,FENG Q L,et al.Milankovitch and Sub-Milankovitch Cycles of the Early Triassic Daye Formation,South China and Their Geochro-nological and Paleoclimatic Implications[J].Gondwana Research,2012,22(2):748-759. [52] HUANG C J,TONG J N,HINNOV L,et al.Did the Great Dying of Life Take 700 k.y.?Evidence from Global Astronomical Correlation of the Permian-Triassic Boundary Interval[J].Geology,2011,39(8):779-782. [53] LI M S,HINNOV L,KUMP L.Acycle:Time-series Analysis Software for Paleoclimate Research and Edu-cation[J].Computers and Geosciences,2019,127:12-22. [54] LI M S,HUANG C J,HINNOV L,et al.Obliquity-forced Climate During the Early Triassic Hothouse in China[J].Geology,2016,44(8):623-626. [55] THOMSON D J.Spectrum Estimation and Harmonic Analysis[J].Proceedings of the IEEE,1982,70(9):1055-1096. [56] MANN M E,LEES J M.Robust Estimation of Background Noise and Signal Detection in Climatic Time Series[J].Climatic Change,1996,33(3):409-445. [57] KODAMA K P,HINNOV L A.Rock Magnetic Cyclostratigraphy[M].New York:John Wiley and Sons,2014. [58] TORRENCE C,COMPO G P.A Practical Guide to Wavelet Analysis[J].Bulletin of the American Meteorological Society,1998,79(1):61-78. [59] HILGEN F J,LOURENS L J,DAM J A V,et al.The Neogene Period[M]∥GRADSTEIN F M,OGG J G,SCHMITZ M D,et al.The Geologic Time Scale.Amsterdam:Elsevier,2012:923-978. [60] WEEDON G P.Time-series Analysis and Cyclostrati-graphy-examining Stratigraphic Records of Environmental Change[M].Cambridge:Cambridge University Press,2003. [61] HINNOV L A,HILGEN F J.Cyclostratigraphy and Astrochronology[M]∥GRADSTEIN F M,OGG J G,SCHMITZ M D,et al.The Geologic Time Scale.Amsterdam:Elsevier,2012:63-83. [62] 黄春菊.旋回地层学和天文年代学及其在中生代的研究现状[J].地学前缘,2014,21(2):48-66. HUANG Chun-ju.The Current Status of Cyclostrati-graphy and Astrochronology in the Mesozoic[J].Earth Science Frontiers,2014,21(2):48-66. [63] LASKAR J,ROBUTEL P,JOUTEL F.A Long-term Numerical Solution for the Insolation Quantities of the Earth[J].Astronomy and Astrophysics,2004,428(1):261-286. [64] 吴怀春,钟阳阳,房 强,等.古生代旋回地层学与天文地质年代表[J].矿物岩石地球化学通报,2017,36(5):750-770. WU Huai-chun,ZHONG Yang-yang,FANG Qiang,et al.Paleozoic Cyclostratigraphy and Astronomical Time Scale[J].Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(5):750-770. [65] 睢 瑜.华南地区埃迪卡拉纪陡山沱组旋回地层学研究[D].武汉:中国地质大学,2019. SUI Yu.Cyclostratigraphic Analysis of the Ediacaran Doushantuo Formation,South China[D].Wuhan:China University of Geosciences,2019. [66] HILGEN F,ZEEDEN C,LASKAR J.Paleoclimate Records Reveal Elusive ~200-kyr Eccentricity Cycle for the First Time[J].Global and Planetary Change,2020,194:103296. [67] WESTERHOLD T,BICKERT T,ROHL U.Middle to Late Miocene Oxygen Isotope Stratigraphy of ODP Site 1085(SE Atlantic):New Constrains on Miocene Climate Variability and Sea-level Fluctuations[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,217:205-222. [68] LIEBRAND D,BEDDOW H M,LOURENS L J,et al.Cyclostratigraphy and Eccentricity Tuning of the Early Oligocene Through Early Miocene(30.1-17.1 Ma):Cibicides Mundulus Stable Oxygen and Carbon Isotope Records from Walvis Ridge Site 1264[J].Earth and Planetary Science Letters,2016,450:392-405. [69] LARSON H C,SAUNDERS A D,CLIFT P D.Seven Million Years of Glaciation in Greenland[J].Science,1994,264:952-955. [70] JANSEN E,SIOHOL M J.Reconstruction of Glaciation over the Past 6 Myr from Ice-borne Deposits in the Norwegian Sea[J].Nature,1991,349:600-603.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-10-14; 修回日期:2021-01-04
基金项目:第二次青藏高原综合科学考察研究专题(2019QZKK0704); 国家自然科学基金项目(41772167,41140028); 黄土与第四纪地质国家重点实验室基金项目(SKLLQG1905)
作者简介:杨彦峰(1995-),男,山西吕梁人,工学硕士研究生,E-mail:1194274297@qq.com。
*通讯作者:符超峰(1969-),男,陕西咸阳人,长安大学教授,博士研究生导师,理学博士,E-mail:fucf@chd.edu.cn。
更新日期/Last Update: 2021-04-20