|本期目录/Table of Contents|

[1]夏曼玉,张少杰*,杨红娟,等.基于光纤传感技术的泥石流冲击力测量系统与反演方法[J].地球科学与环境学报,2021,43(06):1009-1017.[doi:10.19814/j.jese.2021.04030]
 XIA Man-yu,ZHANG Shao-jie*,YANG Hong-juan,et al.Fiber Sensing Technique Based System to Measure and Invert Debris Flow Impact Force[J].Journal of Earth Sciences and Environment,2021,43(06):1009-1017.[doi:10.19814/j.jese.2021.04030]
点击复制

基于光纤传感技术的泥石流冲击力测量系统与反演方法(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第06期
页码:
1009-1017
栏目:
水资源与环境
出版日期:
2021-11-15

文章信息/Info

Title:
Fiber Sensing Technique Based System to Measure and Invert Debris Flow Impact Force
文章编号:
1672-6561(2021)06-1009-09
作者:
夏曼玉12张少杰1*杨红娟1杨超平12
(1. 中国科学院、水利部成都山地灾害与环境研究所 中国科学院山地灾害与地表过程重点实验室,四川 成都 610041; 2. 中国科学院大学, 北京 100049)
Author(s):
XIA Man-yu12 ZHANG Shao-jie1* YANG Hong-juan1 YANG Chao-ping12
(1. Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
泥石流 冲击力 光纤布拉格光栅 模型实验 悬臂梁 弯曲变形 浆体动压力
Keywords:
debris flow impact force FBG model experiment cantilever beam bending deformation slurry dynamic pressure
分类号:
P694; P642.23
DOI:
10.19814/j.jese.2021.04030
文献标志码:
A
摘要:
目前水槽实验一般采用压电式压力传感器测量泥石流冲击力,这种传统测量模式的电信号易受电线阻抗效应的影响,且没有考虑测量装置受冲击变形对测量结果所产生的影响。针对以上问题,基于光纤布拉格光栅(Fiber Bragg Grating,FBG)传感技术,设计了悬臂梁式泥石流冲击力测量系统; 基于泥石流的宾汉体模型和受冲击体的本构关系,构建了包含中心波长最大偏移量、结构材料弹性模量和流深的泥石流最大冲击力反演公式。依据测量系统的力-光耦合效应设计水槽实验,开展了7组不同密度(1.8、1.9、2.0 g·cm-3)的冲击实验工况。结果表明:①数据之间呈现较好的规律性,光纤布拉格光栅中心波长最大偏移量随着密度的增加而增大,同一密度下光纤布拉格光栅中心波长变化过程与泥石流冲击过程相吻合,从而验证了冲击力反演模型和测量系统之间具有良好的适应性; ②冲击力峰值为30.75~74.06 kPa,冲击力系数为0.92~1.95,与泥石流冲击特性相吻合,进而验证了本测量系统在克服传统压电式压力传感器自身缺陷的同时,亦能实现冲击力的稳定可靠测量。
Abstract:
Flume experiments generally use piezoelectric sensors to measure debris flow impact force. The electrical signal data in the traditional measurement mode are easily affected by the impedance effect of power line. In addition, the device deformation induced by the impact force is not considered, which can influence the measurement result. To address the above issues, a system by integrating cantilever beam and FBG for measuring debris flow impact force was designed. Based on Bingham model of debris flow and the constitutive relation of cantilever beam, the inversion formula for the maximum impact force of debris flow including maximum shift value of central wavelength, elastic modulus of structral materials and flow depth was derived. The flume experiments schemes were designed according to the force-light coupling effect of the measurement system, and the impact experiment cases considering several different densities of debris flow(1.8, 1.9, 2.0 g·cm-3)were carried out. The results show that: ① These data show good regularity. The maximum shift values of FBG center wavelength are positively correlated with density of debris flow. Under the same density, the FBG center wavelength change process and debris flow impact process have the similar trend, which verifies the good adaptability between the impact force inversion model and the measurement system. ② The maximum impact force ranges from 30.75 to 74.06 kPa, and the impact force coefficient ranges from 0.92 to 1.95, which is consistent with the impact characteristics of debris flow. It is verified that the measurement system can achieve stable and reliable measurement of impact force while overcoming the defects of the traditional piezoelectric sensors.

参考文献/References:

[1] 费祥俊,舒安平.泥石流运动机理与灾害防治[M].北京:清华大学出版社,2004.
FEI Xiang-jun,SHU An-ping.Movement Mechanism and Disaster Control for Debris Flow[M].Beijing:Tsinghua University Press,2004.
[2] LICHTENHAHN C.Die Berechnung Von Sperren in Beton und Eisenbeton,Kolloquium Über Wildbachsperren[J].Mitteilungen der Forstlichen Bundesversuchsanstalt Wien,1973,102:91-127.
[3] WATANABE M,IKEYA H.Investigation and Ana-lysis of Volcanic Mud Flows on Mount Sakurajima,Japan[C]∥International Association of Hydrological Sciences.Erosion Sediment Transport Measurement in Rivers:Technological and Methodological Advan-ces.Florence:International Association of Hydrological Sciences,1981:245-256.
[4] SCHEIDL C,CHIARI M,KAITNA R,et al.Analysing Debris-flow Impact Models,Based on a Small Scale Modelling Approach[J].Surveys in Geophysics,2013,34(1):121-140.
[5] YANG H J,WEI F Q,HU K H,et al.Measuring the Internal Velocity of Debris Flows Using Impact Pressure Detecting in the Flume Experiment[J].Journal of Mountain Science,2011,8:109-116.
[6] TANG J B,HU K H.A Debris-flow Impact Pressure Model Combining Material Characteristics and Flow Dynamic Parameters[J].Journal of Mountain Science,2018,15:2721-2729.
[7] 王东坡,陈 政,何思明,等.泥石流冲击桥墩动力相互作用物理模型实验[J].岩土力学,2019,40(9):3363-3372.
WANG Dong-po,CHEN Zheng,HE Si-ming,et al.The Physical Model Experiments of Dynamic Interaction Between Debris Flow and Bridge Pier Model[J].Rock and Soil Mechanics,2019,40(9):3363-3372.
[8] ANTONIO B,JOAN C,SERGI V.A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications[J].Sensors,2016,16(5):748.
[9] CHEN J,CHENG F,XIONG F,et al.An Experimental Study:Fiber Bragg Grating-hydrothermal Cycling Integration System for Seepage Monitoring of Rockfill Dams[J].Structural Health Monitoring,2017,16(1):50-61.
[10] HABEL W R,KREBBER K.Fiber-optic Sensor Applications in Civil and Geotechnical Engineering[J].Photonic Sensors,2011,1(3):268-280.
[11] 朱鸿鹄,施 斌,张诚成.地质和岩土工程光电传感监测研究新进展:第六届OSMG国际论坛综述[J].工程地质学报,2020,28(1):178-188.
ZHU Hong-hu,SHI Bin,ZHANG Cheng-cheng.Current Progress and Trends in Opto-electronic Sensor-based Monitoring in Geo-engineering:A Summary of 6th OSMG-2017[J].Journal of Engineering Geology,2020,28(1):178-188.
[12] WANG B J,LI K,SHI B,et al.Test on Application of Distributed Fiber Optic Sensing Technique into Soil Slope Monitoring[J].Landslides,2009,6:61-68.
[13] ZHU H H,SHI B,YAN J F,et al.Investigation of the Evolutionary Process of a Reinforced Model Slope Using a Fiber-optic Monitoring Network[J].Engineering Geology,2015,186:34-43.
[14] WANG K,ZHANG S J,CHEN J,et al.A Laboratory Experimental Study:An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides[J].Sensors,2017,17(11):2486.
[15] ZHANG S J,CHEN J.An Experimental Study:Integration Device of Fiber Bragg Grating and Reinforced Concrete Beam for Measuring Debris Flow Impact Force[J].Journal of Mountain Science,2017,14:1526-1536.
[16] ZHANG S J,XU C X,CHEN J,et al.An Experimental Evaluation of Impact Force on a Fiber Bragg Grating-based Device for Debris Flow Warning[J].Landslides,2019,16:65-73.
[17] HUANG C J,CHU C R,TIEN T M,et al.Calibration and Deployment of a Fiber-optic Sensing System for Monitoring Debris Flows[J].Sensors,2012,12(5):5835-5849.
[18] PEI H F,CUI P,YIN J H.et al.Monitoring and Warning of Landslides and Debris Flows Using an Optical Fiber Sensor Technology[J].Journal of Mountain Science,2011,8:728-738.
[19] CHOU H T,CHEUNG Y L,ZHANG S C.Calibration of Infrasound Monitoring System and Acoustic Characteristics of Debris-flow Movement by Field Studies[C]∥CHEN C L,MAJOR J J.Debris-flow Hazards Mitigation:Mechanics,Prediction,and Assessment.Rotterdam:Millpress Science Publishers,2007:571-580.
[20] LIN Y L,LIN K H,LIN W W,et al.A Debris Flow Monitoring System by Means of Fiber Optic Interfe-rometers[C]∥UDD E.Fiber Optic Sensors and Applications V.Boston:SPIE,2007:67-700Z.
[21] 秦 朋,蔡德所,黎佛林,等.光纤光栅在泥石流预警中的应用[J].光通信技术,2013,37(10):22-23.
QIN Peng,CAI De-suo,LI Fo-lin,et al.Application of FBG in Early Warning of Debris Flow[J].Optical Communication Technology,2013,37(10):22-23.
[22] ARATTANO M,FRANZI L.On the Evaluation of Debris Flows Dynamics by Means of Mathematical Models[J].Natural Hazards and Earth System Sciences,2003,3(6):539-544.
[23] 唐金波,胡凯衡,周公旦,等.基于小波分析的泥石流冲击力信号处理[J].四川大学学报(工程科学版),2013,45(1):8-13.
TANG Jin-bo,HU Kai-heng,ZHOU Gong-dan,et al.Debris Flow Impact Pressure Signal Processing by Wavelet Analysis[J].Journal of Sichuan University(Engineering Science Edition),2013,45(1):8-13.
[24] 章书成,袁建模.泥石流冲击力及其测试[M].北京:科学出版社,1985.
ZHANG Shu-cheng,YUAN Jian-mo.The Test and Impact Force of Debris-flow[M].Beijing:Science Press,1985.
[25] 吴积善,张 军,程尊兰,等.粘性泥石流的泥深与残留层关系及其确定[J].泥沙研究,2003(6):7-12.
WU Ji-shan,ZHANG Jun,CHENG Zun-lan,et al.Relation and Its Determination of Residual Layer and Depth of Viscous Debris Flow[J].Journal of Sediment Research,2003(6):7-12.
[26] 曾 超,苏志满,雷 雨,等.泥石流浆体与大颗粒冲击力特征的试验研究[J].岩土力学,2015,36(7):1923-1930,1938.
ZENG Chao,SU Zhi-man,LEI Yu,et al.An Experimental Study of the Characteristics of Impact Forces Between Debris Flow Slurry and Large-sized Particles[J].Rock and Soil Mechanics,2015,36(7):1923-1930,1938.
[27] ZHANG S C.A Comprehensive Approach to the Observation and Prevention of Debris Flows in China[J].Natural Hazards,1993,7(1):1-23.

相似文献/References:

[1]谢和平,邓建辉,李碧雄.四川芦山地震灾害调查与灾后重建的相关问题分析[J].地球科学与环境学报,2013,35(02):1.
 XIE He-ping,DENG Jian-hui,LI Bi-xiong.Investigation of Lushan Earthquake Disasters and Analysis of Related Problems During Post-quake Reconstruction in Sichuan[J].Journal of Earth Sciences and Environment,2013,35(06):1.
[2]谢洪,刘维明,赵晋恒,等.四川石棉2012年“7·14”唐家沟泥石流特征[J].地球科学与环境学报,2013,35(04):90.
 XIE Hong,LIU Wei-ming,ZHAO Jin-heng,et al.Characteristics of Tangjiagou Debris Flow in Shimian of Sichuan in July 14, 2012[J].Journal of Earth Sciences and Environment,2013,35(06):90.
[3]马超,胡凯衡,宋国虎,等.汶川地震灾区帽壳子滑坡形成泥石流的过程和特征[J].地球科学与环境学报,2013,35(04):98.
 MA Chao,HU Kai-heng,SONG Guo-hu,et al.Processes and Characteristics of Debris Flows Induced by Maoqiaozi Landslide in Wenchuan Earthquake Stricken Area[J].Journal of Earth Sciences and Environment,2013,35(06):98.
[4]乔成,欧国强,潘华利,等.泥石流数值模拟方法研究进展[J].地球科学与环境学报,2016,38(01):134.
 QIAO Cheng,OU Guo-qiang,PAN Hua-li,et al.Review on Numerical Modeling Methods of Debris Flow[J].Journal of Earth Sciences and Environment,2016,38(06):134.
[5]宋志,李宗亮,巴仁基,等.贡嘎山东坡雅家埂河特大型泥石流动力学特征[J].地球科学与环境学报,2010,32(04):416.
 SONG Zhi,LI Zong-liang,BA Ren-ji,et al.Kinetic Characteristics of Oversize Mud-rock Flow in Yajiageng River of Eastern Gongga Mountain[J].Journal of Earth Sciences and Environment,2010,32(06):416.
[6]李阔,唐川.泥石流危险范围预测模型及在昆明东川城区的应用[J].地球科学与环境学报,2006,28(04):69.
 LI Kuo,TANG Chuan.Application of Prediction Model of Hazard Range about Debris Flows around Dongchuan Zone in Kunming[J].Journal of Earth Sciences and Environment,2006,28(06):69.
[7]田梅青,姜振泉,刘炜金,等.山东省栖霞市泥石流灾害的 成生环境及危险性趋势分区评价[J].地球科学与环境学报,2005,27(04):24.
 TIAN Mei-qing,JIANG Zhen-quan,LIU Wei-jin,et al.Zonal Evaluation on Formation Environment and Dangerous Trend of Debris Flow in Qixia City of Shandong Province[J].Journal of Earth Sciences and Environment,2005,27(06):24.

备注/Memo

备注/Memo:
收稿日期:2021-04-28; 修回日期:2021-08-31投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(51809262); 中国科学院重点部署项目(KFZD-SW-430)
作者简介:夏曼玉(1996-),女,河南周口人,中国科学院大学工程硕士研究生,E-mail:xiamanyu19@mails.ucas.ac.cn。
*通讯作者:张少杰(1983-),男,山东青岛人,副研究员,工学博士,E-mail:sj-zhang@imde.ac.cn。
更新日期/Last Update: 2021-11-10