|本期目录/Table of Contents|

[1]赵雪琰,徐占杰*,董志超,等.放射性碳同位素技术在碳质气溶胶源解析中的应用研究进展[J].地球科学与环境学报,2022,44(04):685-698.[doi:10.19814/j.jese.2021.08003]
 ZHAO Xue-yan,XU Zhan-jie*,DONG Zhi-chao,et al.Review on Application of Radiocarbon Isotope Technique in Source Apportionment of Carbonaceous Aerosols[J].Journal of Earth Sciences and Environment,2022,44(04):685-698.[doi:10.19814/j.jese.2021.08003]
点击复制

放射性碳同位素技术在碳质气溶胶源解析中的应用研究进展(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第04期
页码:
685-698
栏目:
环境与可持续发展
出版日期:
2022-07-15

文章信息/Info

Title:
Review on Application of Radiocarbon Isotope Technique in Source Apportionment of Carbonaceous Aerosols
文章编号:
1672-6561(2022)04-0685-14
作者:
赵雪琰12徐占杰12*董志超12李培森12赵晓麦12傅平青12Chandra Mouli PAVULURI12**
(1. 天津大学 地球系统科学学院/表层地球系统科学研究院,天津 300072; 2. 天津大学 天津市环渤海地球关键带科学与可持续发展重点实验室,天津 300072)
Author(s):
ZHAO Xue-yan12 XU Zhan-jie12* DONG Zhi-chao12 LI Pei-sen12 ZHAO Xiao-mai12 FU Ping-qing12 Chandra Mouli PAVULURI12**
(1. School of Earth System Science/Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; 2. Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China)
关键词:
放射性碳同位素 稳定碳同位素 源解析 化石源 生物源 单体分子放射性碳同位素分析 分子标志物 碳质气溶胶
Keywords:
radiocarbon isotope stable carbon isotope source apportionment fossil source biogenic source analysis of compound-specific radiocarbon isotope molecular marker carbonaceous aerosol
分类号:
X513
DOI:
10.19814/j.jese.2021.08003
文献标志码:
A
摘要:
碳质气溶胶是大气气溶胶的重要组成部分,能够影响太阳辐射在大气层中的正常传播,与气候变化、空气污染和人类健康等关乎人类可持续发展的重要问题密切相关。大气环境中的碳质气溶胶主要包含有机碳和元素碳,其中有机碳可分为水溶性有机碳和非水溶性有机碳。碳质气溶胶的来源及其形成转化过程是目前大气环境科学领域最为重要的研究方向之一。放射性碳同位素比值(Δ14C)在碳质气溶胶源解析上具有优势,是目前唯一可以量化化石源和生物源在不同类别碳质组分中贡献大小的手段。在系统总结国内外放射性碳同位素技术在碳质气溶胶源解析上的最新研究进展的基础上,详细阐述了放射性碳同位素比值在碳质气溶胶源解析上的应用原理,深入探究了放射性碳同位素比值在碳质组分中的研究进展,重点分析了单体分子放射性碳同位素分析在碳质气溶胶中的发展和应用。最后,对放射性碳同位素比值与稳定碳同位素比值(δ13C)联用,以及单体分子标志物的放射性碳同位素比值研究进行了展望,为碳质气溶胶的来源解析和气溶胶化学过程研究提供参考依据。
Abstract:
Carbonaceous aerosols that are composed of a complex mixture of organic carbon(OC)and elemental carbon(EC), have severe impacts on the Earth's climate system, air pollution and human health. OC consists of both water soluble organic carbon(WSOC)and water insoluble organic carbon(WIOC). They are directly emitted from primary anthropogenic and natural sources such as fossil fuel combustion, biomass burning and biological materials, and produced by photo-oxidation reactions of gaseous organic species in the atmosphere, whereas the EC emits directly from only combustion sources. However, the apportionment of various source contributions to carbonaceous aerosols is not clear due to their complexity and lack of analytical techniques. That is why, the identification of origins and/or formation processes of carbonaceous components including EC in the given atmospheric environment has become an important research area in the field of atmospheric science. Because the measurement of radiocarbon isotope ratio(Δ14C)can distinguish the fossil and biogenic carbon content in the given samples, this technique has been considered as an unique tool in quantifying the contributions of various carbonaceous components from different sources. Based on this, the principle and application of 14C in the source apportionment of fossil and contemporary carbon in carbonaceous aerosols are introduced in detail, and the results of 14C-based source apportionment of various carbonaceous components(OC, WSOC, WIOC and EC)reported in the literature in recent times are systematically summarized. Furthermore, the compound-specific radiocarbon analysis is deeply explored, which provides better insights on the sources of organic aerosols, reduces the uncertainty in their apportionment. Finally, the prospects of the combined use of Δ14C and stable carbon isotope ratio(δ13C)together with specific molecular markers are described to better identify the origins and chemical processes of organic aerosols in the atmosphere.

参考文献/References:

[1] BELLOUIN N,QUAAS J,GRYSPEERDT E,et al.Bounding Global Aerosol Radiative Forcing of Climate Change[J].Reviews of Geophysics,2020,58(1):e2019RG000660.
[2] 段凤魁,贺克斌,刘咸德,等.含碳气溶胶研究进展:有机碳和元素碳[J].环境工程学报,2007,1(8):1-8.
DUAN Feng-kui,HE Ke-bin,LIU Xian-de,et al.Review of Carbonaceous Aerosols Studies:Organic Carbon and Elemental Carbon[J].Chinese Journal of Environmental Engineering,2007,1(8):1-8.
[3] ZHANG X Y,WANG Y Q,ZHANG X C,et al.Carbonaceous Aerosol Composition over Various Regions of China During 2006[J].Journal of Geophysical Research:Atmospheres,2008,113(D14):D14111.
[4] CAO G L,ZHANG X Y,GONG S L,et al.Investigation on Emission Factors of Particulate Matter and Gaseous Pollutants from Crop Residue Burning[J].Journal of Environmental Sciences,2008,20(1):50-55.
[5] CAO J J,LEE S C,CHOW J C,et al.Spatial and Seasonal Distributions of Carbonaceous Aerosols over China[J].Journal of Geophysical Research:Atmospheres,2007,112(D22):D22S11.
[6] CHOW J C,WATSON J G.PM2.5 Carbonate Concentrations at Regionally Representative Interagency Monitoring of Protected Visual Environment Sites[J].Journal of Geophysical Research:Atmospheres,2002,107(D21):8344.
[7] JACOBSON M Z.Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Ae-rosols[J].Nature,2001,409:695-697.
[8] BOND T C,DOHERTY S J,FAHEY D W,et al.Bounding the Role of Black Carbon in the Climate System:A Scientific Assessment[J].Journal of Geophysical Research:Atmospheres,2013,118(11):5380-5552.
[9] HANSEN J,NAZARENKO L.Soot Climate Forcing via Snow and Ice Albedos[J].PNAS,2004,101(2):423-428.
[10] JONKER M T O,KOELMANS A A.Sorption of Po-lycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls to Soot and Soot-like Materials in the Aqueous Environment:Mechanistic Considerations[J].Environmental Science and Technology,2002,36(17):3725-3734.
[11] NEL A.Air Pollution-related Illness:Effects of Particles[J].Science,2005,308:804-806.
[12] GEHRIG R,BUCHMANN B.Characterizing Season-al Variations and Special Distribution of Ambient PM10 and PM2.5 Concentrations Based on Long-term Swiss Monitoring Data[J].Atmospheric Environment,2003,37(19):2571-2580.
[13] MALM W C,GEBHART K A.Source Apportionment of Organic and Light-absorbing Carbon Using Receptor Modeling Techniques[J].Atmospheric Environment,1996,30(6):843-855.
[14] HUANG R J,ZHANG Y,BOZZETTI C,et al.High Secondary Aerosol Contribution to Particulate Pollution During Haze Events in China[J].Nature,2014,514:218-222.
[15] 王跃思,张军科,王莉莉,等.京津冀区域大气霾污染研究意义、现状及展望[J].地球科学进展,2014,29(3):388-396.
WANG Yue-si,ZHANG Jun-ke,WANG Li-li,et al.Researching Significance,Status and Expectation of Haze in Beijing-Tianjin-Hebei Region[J].Advances in Earth Science,2014,29(3):388-396.
[16] 贺 泓,王新明,王跃思,等.大气灰霾追因与控制[J].中国科学院院刊,2013,28(3):344-352.
HE Hong,WANG Xin-ming,WANG Yue-si,et al.Formation Mechanism and Control Strategies of Haze in China[J].Bulletin of Chinese Academy of Sciences,2013,28(3):344-352.
[17] SZIDAT S.14C Research at the Laboratory for the Analysis of Radiocarbon with AMS(LARA),University of Bern[J].CHIMA International Journal for Chemistry,2020,74(12):1010-1014.
[18] STUIVER M,POLACH H A.Discussion Reporting of 14C Data[J].Radiocarbon,1977,19(3):355-363.
[19] UCHIDA M,KUMATA H,KOIKE Y,et al.Radiocarbon-based Source Apportionment of Black Carbon(BC)in PM10 Aerosols from Residential Area of Su-burban Tokyo[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2010,268(7/8):1120-1124.
[20] SZIDAT S,JENK T M,GAGGELER H W,et al.Radiocarbon(14C)-deduced Biogenic and Anthropogenic Contributions to Organic Carbon(OC)of Urban Ae-rosols from Zurich,Swizerland[J].Atmospheric Environment,2004,38(24):4035-4044.
[21] SZIDAT S,JENK T M,GAGGELER H W,et al.Source Apportionment of Aerosols by 14C Measurements in Different Carbonaceous Particle Fractions[J].Radiocarbon,2004,46(1):475-484.
[22] SZIDAT S,JENK T M,SYNAL H,et al.Contributions of Fossil Fuel,Biomass Burning,and Biogenic Emissions to Carbonaceous Aerosols in Zurich as Traced by 14C[J].Journal of Geophysical Research:Atmospheres,2006,111(D7):D07206.
[23] RYBICKI M,MARYNOWSKI L,SIMONEIT B R T.Composition of Organic Compounds from Low-temperature Burning of Lignite and Their Application as Tracers in Ambient Air[J].Chemosphere,2020,249:126087.
[24] RYBICKI M,MARYNOWSKI L BECHTEL A,et al.Variations in δ13C Values of Levoglucosan from Low-temperature Burning of Lignite and Biomass[J].Science of the Total Environment,2020,733:138991.
[25] REDDY C M,PEARSON A,XU L,et al.Radiocarbon as a Tool to Apportion the Sources of Polycyclic Aromatic Hydrocarbons and Black Carbon in Environmental Samples[J].Environmental Science and Technology,2002,36(8):1774-1782.
[26] MOLLENHAUER G,RETHEMEYER J.Compound-specific Radiocarbon Analysis:Analytical Challenges and Applications [C]∥IOP.IOP Conference Series:Earth and Environmental Science Progam.Faro:IOP,2009:012006.
[27] MANDALAKIS M,GUSTAFSSON O,ALSBERG T,et al.Contribution of Biomass Burning to Atmosphe-ric Polycyclic Aromatic Hydrocarbons at Three European Background Site[J].Environmental Science and Technology,2005,39(9):2976-2982.
[28] FAHRNI S M,RUFF M,WACKER L,et al.A Preparative 2D-chromatography Method for Compound-specific Radiocarbon Analysis of Dicarboxylic Acids in Aerosols[J].Radiocarbon,2010,52(2):752-760.
[29] WACKER L,FAHRNI S M,HAJDAS I,et al.A Versatile Gas Interface for Routine Radiocarbon Analysis with a Gas Ion Source[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2013,294:315-319.
[30] WACKER L,BONANI G,FRIEDRICH M,et al.MICADAS:Rutine and High-precision Radiocarbon Dating[J].Radiocarbon,2010,52(2):252-262.
[31] UHL T,LUPPOLD W,ROTTENBACH A,et al.Development of an Automatic Gas Handling System for Microscale AMS 14C Measurements[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,259(1):303-307.
[32] SZIDAT S,SALAZAR G A,VOGEL E,et al.14C Analysis and Sample Preparation at the New Bern Laboratory for the Analysis of Radiocarbon with AMS(LARA)[J].Radiocarbon,2014,56(2):561-566.
[32] EGLINTON T I,ALUWIHARE L I,BAUER J E,et al.Gas Chromatographic Isolation of Individual Compounds from Complex Matrices for Radiocarbon Dating[J].Analytical Chemistry,1996,68(5):904-912.
[33] CURRIE L A.Evolution and Multidisciplinary Frontiers of 14C Aerosol Science[J].Radiocarbon,2000,42(1):115-126.
[34] 张世春,王毅勇,童全松.碳同位素技术在碳质气溶胶源解析中应用的研究进展[J].地球科学进展,2013,28(1):62-70.
ZHANG Shi-chun,WANG Yi-yong,TONG Quan-song.The Use of Carbon Isotope Analysis in Source Apportionment of Carbonaceous Aerosols:A Review[J].Advances in Earth Science,2013,28(1):62-70.
[35] GRAVEN H D.Impact of Fossil Fuel Emissions on Atmospheric Radiocarbon and Various Applications of Radiocarbon over This Century[J].PNAS,2015,112(31):9542-9545.
[36] REDDY C M,XU L.Using Radiocarbon to Apportion Sources of Polycyclic Aromatic Hydrocarbons in Household Soot[J].Environmental Forensics,2003,4(3):191-197.
[37] MOHN J,SZIDAT S,FELLNER J,et al.Determination of Biogenic and Fossil CO2 Emitted by Waste Incineration Based on 14CO2 and Mass Balances[J].Bioresource Technology,2008,99(14):6471-6479.
[38] GUSTAFSSON O,KRUSA M,ZENCAK Z,et al.Brown Clouds over South Asia:Biomass or Fossil Fuel Combustion?[J].Science,2009,323:495-498.
[39] KIRILLOVA E N,SHEESLEY R J,ANDERSSON A,et al.Natural Abundance 13C and 14C Analysis of Water-soluble Organic Carbon in Atmospheric Aerosols[J].Analytical Chemistry,2010,82(19):7973-7978.
[40] HANDA D,NAKAJIMA H,ARAKAKI T,et al.Radiocarbon Analysis of BC and OC in PM13 Aerosols at Cape Hedo,Okinawa,Japan,During Long-range Trans-port Events from East Asian Countries[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2010,268(7/8):1125-1128.
[41] 曹 芳,章炎麟.碳质气溶胶的放射性碳同位素(14C)源解析:原理、方法和研究进展[J].地球科学进展,2015,30(4):425-432.
CAO Fan,ZHANG Yan-lin.Principle,Method Deve-lopment and Application of Radiocarbon(14C)—Based Source Apportionment of Carbonaceous Aerosols:A Review[J].Advances in Earth Science,2015,30(4):425-432.
[42] FUSHIMI A,WAGAI R,UCHIDA M,et al.Radiocarbon(14C)Diurnal Variations in Fine Particles at Sites Downwind from Tokyo,Japan in Summer[J].Environmental Science and Technology,2011,45(16):6784-6792.
[43] KE L,DING X,TANNER R L,et al.Source Contributions to Carbonaceous Aerosols in the Tennessee Valley Region[J].Atmospheric Environment,2007,41(39):8898-8923.
[44] SCHICHTEL B A,MALM W C,BENCH G,et al.Fossil and Contemporary Fine Particulate Carbon Fr-actions at 12 Rural and Urban Sites in the United States[J].Journal of Geophysical Research:Atmospheres,2007,113(D2):D02311.
[45] 邵 敏,李金龙,唐孝炎.大气气溶胶含碳组分的来源研究:加速器质谱法[J].核化学与放射化学,1996,18(4):234-238.
SHAO Min,LI Jin-long,TANG Xiao-yan.Study on Source Identification for Carbonaceous Aerosols:The Application of Accelerator Mass Spectrometry[J].Journal of Nuclear and Radiochemistry,1996,18(4):234-238.
[46] YANG F,HE K,YE B,et al.One-year Record of Organic and Elemental Carbon in Fine Particles in Do-wntown Beijing and Shanghai[J].Atmospheric Che-mistry and Physics,2005,5(6):1449-1457.
[47] SONG J Z,HE L L,PENG P A,et al.Chemical and Isotopic Composition of Humic-like Substances(HULIS)in Ambient Aerosols in Guangzhou,South China[J].Aerosol Science and Technology,2011,46(5):533-546.
[48] CLAYTON G D,ARNOLD J R,PATTY F A.Determination of Sources of Particulate Atmospheric Carbon[J].Science,1955,122:751-753.
[49] ZOTTER P,CIOBANU V G,ZHANG Y L,et al.Radiocarbon Analysis of Elemental and Organic Carbon in Switzerland During Winter-smog Episodes from 2008 to 2012,Part 1:Source Apportionment and Spatial Variability[J].Atmospheric Chemistry and Phy-sics,2014,14(24):13551-13570.
[50] DING X,ZHENG M,EDGERTON E S,et al.Contemporary or Fossil Origin:Split of Estimated Secondary Organic Carbon in the Southeastern United States[J].Environmental Science and Technology,2008,42(24):9122-9128.
[51] ULEVICIUS V,BYCENKIENE S,BOZZETTI C,et al.Fossil and Non-fossil Source Contributions to Atmospheric Carbonaceous Aerosols During Extreme Spring Grassland Fires in Eastern Europe[J].Atmospheric Chemistry and Physics,2016,16(9):5513-5529.
[52] LI T T,LI J,JIANG H,et al.Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Ba-yesian Mixing Model and Radiocarbon[J].Atmosphere,2020,11(5):512.
[53] LIU J W,LI J,ZHANG Y L,et al.Source Apportionment Using Radiocarbon and Organic Tracers for PM2.5 Carbonaceous Aerosols in Guangzhou,South China:Contrasting Local- and Regional-scale Haze Events[J].Environmental Science and Technology,2014,48(20):12002-12011.
[54] LIU J W,LI J,DING P,et al.Optimizing Isolation Protocol of Organic Carbon and Elemental Carbon for 14C Analysis Using Fine Particulate Samples[J].Atmospheric Environment,2017,154:9-19.
[55] LIU J W,LI J,LIU D,et al.Source Apportionment and Dynamic Changes of Carbonaceous Aerosols During the Haze Bloom-decay Process in China Based on Radiocarbon and Organic Molecular Tracers[J].Atmospheric Chemistry and Physics,2016,16(5):2985-2996.
[56] ZHANG Y L,PERRON N,CIOBANU V G,et al.On the Isolation of OC and EC and the Optimal Strategy of Radiocarbon:Based Source Apportionment of Carbonaceous Aerosols[J].Atmospheric Chemistry and Phy-sics,2012,12(22):10841-10856.
[57] ZHANG Y L,LIU D,SHEN C D,et al.Development of a Preparation System for the Radiocarbon Analysis of Organic Carbon in Carbonaceous Aerosols in China[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2010,268(17/18):2831-2834.
[58] LIU D,LI J,ZHANG Y L,et al.The Use of Levoglucosan and Radiocarbon for Source Apportionment of PM2.5 Carbonaceous Aerosols at a Background Site in East China[J].Environmental Science and Technology,2013,47(18):10454-10461.
[59] ZHANG Y L,SCHNELLE-KREIS J,ABBASZADE G,et al.Source Apportionment of Elemental Carbon in Beijing,China:Insights from Radiocarbon and Organic Marker Measurements[J].Environmental Science and Technology,2015,49(14):8408-8415.
[60] CAO F,ZHANG Y L,REN L J,et al.New Insights into the Sources and Formation of Carbonaceous Ae-rosols in China:Potential Applications of Dual-carbon Isotopes[J].National Science Review,2017,4(6):804-806.
[61] DUSEK U,HITZENBERGER R,KASPER-GIEBL A,et al.Sources and Formation Mechanisms of Carbonaceous Aerosol at a Regional Background Site in the Netherlands:Insights from a Year-long Radiocarbon Study[J].Atmospheric Chemistry and Physics,2017,17(5):3233-3251.
[62] SALMA I,VASANITS-ZSIGRAI A,MACHON A,et al.Fossil Fuel Combustion,Biomass Burning and Biogenic Sources of Fine Carbonaceous Aerosol in the Carpathian Basin[J].Atmospheric Chemistry and Physics,2020,20(7):4295-4312.
[63] LIU D,VONWILLER M,LI J,et al.Fossil and Non-fossil Fuel Sources of Organic and Elemental Carbon Aerosols in Beijing,Shanghai and Guangzhou:Seaso-nal Carbon-source Variation[J].Aerosol and Air Qua-lity Research,2020,20(11):2495-2506.
[64] NI H Y,HUANG R J,CAO J J,et al.Sources and Formation of Carbonaceous Aerosols in Xi'an,China:Primary Emissions and Secondary Formation Cons-trained by Radiocarbon[J].Atmospheric Chemistry and Physics,2019,19(24):15609-15628.
[65] HOU S Q,LIU D,XU J S,et al.Source Apportionment of Carbonaceous Aerosols in Beijing with Radiocarbon and Organic Tracers:Insight into the Diffe-rences Between Urban and Rural Sites[J].Atmosphe-ric Chemistry and Physics,2020,21(10):8273-8292.
[66] XU L,ZHENG M,DING X,et al.Modern and Fossil Contributions to Polycyclic Aromatic Hydrocarbons in PM2.5 from North Birmingham,Alabama in the Southeastern U.S.[J].Environmental Science and Technology,2011,46(3):1422-1429.
[67] ZENCAK Z,KLANOVA J,HOLOUBEK I,et al.Source Apportionment of Atmospheric PAHs in the Western Balkans by Natural Abundance Radiocarbon Analysis[J].Environmental Science and Technology,2007,41(11):3850-3855.
[68] ZHU C,KAWAMURA K,KUNWAR B,et al.Effect of Biomass Burning over the Western North Pacific Rim:Wintertime Maxima of Anhydrosugars in Ambient Aerosols from Okinawa[J].Atmospheric Chemistry and Physics,2015,15(4):1959-1973.
[69] SZIDAT S,FAHRNI S,PERRON N,et al.Fossil and Non-fossil Sources of Carbonaceous Aerosols from 14C[J].Geochemica et Cosmochimica Acta,2009,73(13):A1301-A1301.
[70] ZHANG Y L,HUANG R J,ELHADDAD I,et al.Fossil vs.Non-fossil Sources of Fine Carbonaceous Aerosols in Four Chinese Cities During the Extreme Winter Haze Episode of 2013[J].Atmospheric Chemistry and Physics,2015,15(3):1299-1312.
[71] ANDERSON A,SHEESLEY R J,KRUS M,et al.14C-based Source Assessment of Soot Aerosols in Sto-ckholm and the Swedish EMEP-Aspvreten Regional Background Site[J].Atmospheric Environment,2011,45(1):215-222.
[72] CHENG Y,ENGLING G,HE K B,et al.Biomass Bur-ning Contribution to Beijing Aerosol[J].Atmosphe-ric Chemistry and Physics,2013,13(15):7765-7781.
[73] WOZNIAK A S,BAUER J E,DICKHUT R M,et al.Correction to “Isotopic Characterization of Aerosol Organic Carbon Components over the Eastern United States”[J].Journal of Geophysical Research:Atmospheres,2012,117(D15):D15399.
[74] BOSCH C,ANDERSSON A,KIRILLOVA E N,et al.Source-diagnostic Dual-isotope Composition and Optical Properties of Water-soluble Organic Carbon and Elemental Carbon in the South Asian Outflow Intercepted over the Indian Ocean[J].Journal of Geophysical Research:Atmospheres,2015,119(20):11743-11759.
[75] MIYAKAWA T,KOMAZAKI Y,ZHU C,et al.Cha-racterization of Carbonaceous Aerosols in Asian Outflow in the Spring of 2015:Importance of Non-fossil Fuel Sources[J].Atmospheric Environment,2019,214:116858.
[76] KONTUL I,KAIZER J,JESKOVSKY M,et al.Radiocarbon Analysis of Carbonaceous Aerosols in Bratislava,Slovakia[J].Journal of Environmental Radioactivity,2020,218:106221.
[77] WOZNIAK A S,BAUER J E,DICKHUT R M.Cha-racteristics of Water-soluble Organic Carbon Associa-ted with Aerosol Particles in the Eastern United Sta-tes[J].Atmospheric Environment,2012,46:181-188.
[78] BHATTARAI H,SAIKAWA E,WAN X,et al.Levoglucosan as a Tracer of Biomass Burning:Recent Progress and Perspectives[J].Atmospheric Research,2019,220:20-33.
[79] ZHANG Y L,ZOTTER P,PERRON N,et al.Fossil and Non-fossil Sources of Different Carbonaceous Fractions in Fine and Coarse Particles by Radiocarbon Measurement[J].Radiocarbon,2013,55(2/3):1510-1520.
[80] BOSCH C,ANDERSSON A,KIRILLOVA E N,et al.Source-diagnostic Dual-isotope Composition and Optical Properties of Water-soluble Organic Carbon and Elemental Carbon in the South Asian Outflow Intercepted over the Indian Ocean[J].Journal of Geophysical Research:Atmospheres,2014,119(20):11743-11759.
[81] LIU J W,MO Y Z,DING P,et al.Dual Carbon Isotopes(14C and 13C)and Optical Properties of WSOC and HULIS-C During Winter in Guangzhou,China[J].Science of the Total Environment,2018,633:1571-1578.
[82] HENNIGAN C J,SULLIVAN A P,COLLETT JR J L,et al.Levoglucosan Stability in Biomass Burning Particles Exposed to Hydroxyl Radicals[J].Geophy-sical Research Letters,2010,37(9):L09806.
[83] PRATAP V,BIAN Q,KIRAN S A,et al.Investigation of Levoglucosan Decay in Wood Smoke Smog-chamber Experiments:The Importance of Aerosol Lo-ading,Temperature,and Vapor Wall Losses in Interpreting Results[J].Atmospheric Environment,2019,199:224-232.
[84] 姜 帆,刘俊文,黄志炯,等.黑碳气溶胶的稳定和放射性碳同位素研究进展[J].科学通报,2020,65(35):4095-4106.
JIANG Fan,LIU Jun-wen,HUANG Zhi-jiong,et al.Progress of the Stable Carbon and Radiocarbon Isotopes of Black Carbon Aerosol [J].Chinese Science Bulletin,2020,65(35):4095-4106.
[85] MARTINSSON J,AZEEM H A,SPORRE M,et al.Carbonaceous Aerosol Source Apportionment Using the Aethalometer Model-evaluation by Radiocarbon and Levoglucosan Analysis at a Rural Background Site in Southern Sweden[J].Atmospheric Chemistry and Physics,2017,17(6):4265-4281.
[86] SHEESLEY R J,KRUSÅ M,KRECL P,et al.Source Apportionment of Elevated Wintertime PAHs by Compound-specific Radiocarbon Analysis[J].Atmospheric Chemistry and Physics,2009,9(10):3347-3356.
[87] KAWAMURA K,MATSUMOTO K,UCHIDA M,et al.Contributions of Modern and Dead Organic Carbon to Individual Fatty Acid Homologues in Spring Aerosols Collected from Northern Japan[J].Journal of Geophysical Research:Atmospheres,2010,115(D22):D22310.
[88] MATSUMOTO K,KAWAMURA K,UCHIDA M,et al.Compound Specific Radiocarbon and δ13C Mea-surements of Fatty Acids in a Continental Aerosol Sample[J].Geophysical Research Letters,2001,28(24):4587-4590.
[89] REN L J,WANG Y Y,KAWAMURA K,et al.Source Forensics of n-alkanes and n-fatty Acids in Urban Aerosols Using Compound Specific Radiocarbon/Stable Carbon Isotopic Composition[J].Environmental Research Letters,2020,15(7):074007.
[90] LIU J W,DING P,ZONG Z,et al.Evidence of Rural and Suburban Sources of Urban Haze Formation in China:A Case Study from the Pearl River Delta Region[J].Journal of Geophysical Research:Atmospheres,2018,123(9):4712-4726.
[91] PANDIS S N,DONAHUE N M,MURPHY B N,et al.Introductory Lecture:Atmospheric Organic Aerosols,Insights from the Combination of Measurements and Chemical Transport Models[J].Faraday Discussions,2013,165:9-24.
[92] XU B Q,CHENG Z N,GOSTAFSSON O,et al.Compound-specific Radiocarbon Analysis of Low Molecular Weight Dicarboxylic Acids in Ambient Aerosols Using Preparative Gas Chromatography:Method Development[J].Environmental Science and Technology Letters,2021,8(2):135-141.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-08-02; 修回日期:2021-11-10投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41775120)
作者简介:赵雪琰(1996-),男,山东崂山人,理学硕士研究生,E-mail:642748203@qq.com。
*通讯作者:徐占杰(1987-),男,河南鹤壁人,讲师,工学博士,E-mail:xuzhanjie@tju.edu.cn。
**通讯作者:Chandra Mouli PAVULURI(1974-),男,教授,博士研究生导师,理学博士,E-mail:cmpavuluri@tju.edu.cn。
更新日期/Last Update: 2022-07-30