|本期目录/Table of Contents|

[1]张 健,何雨蓓,范艳霞.松辽盆地地壳热结构与深部热源条件[J].地球科学与环境学报,2023,45(02):157-167.[doi:10.19814/j.jese.2022.07035]
 ZHANG Jian,HE Yu-bei,FAN Yan-xia.Crustal Thermal Structure and Deep Heat Source Conditions in Songliao Basin, NE China[J].Journal of Earth Sciences and Environment,2023,45(02):157-167.[doi:10.19814/j.jese.2022.07035]
点击复制

松辽盆地地壳热结构与深部热源条件(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第02期
页码:
157-167
栏目:
应用地球物理
出版日期:
2023-03-15

文章信息/Info

Title:
Crustal Thermal Structure and Deep Heat Source Conditions in Songliao Basin, NE China
文章编号:
1672-6561(2023)02-0157-11
作者:
张 健何雨蓓范艳霞
(中国科学院大学 地球与行星科学学院,北京 100049)
Author(s):
ZHANG Jian HE Yu-bei FAN Yan-xia
(College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
地热资源 地壳热结构 放射性生热 上地幔热松弛 居里面 莫霍面 花岗岩 松辽盆地
Keywords:
geothermal resource crustal thermal structure radioactive heat generation thermal relaxation of the upper mantle Curie surface Moho surface granite Songliao Basin
分类号:
P314
DOI:
10.19814/j.jese.2022.07035
文献标志码:
A
摘要:
松辽盆地是中国中低温地热能的重点地热资源区。利用最新地震成像资料,结合重、磁、地热观测数据及盆地构造演化与地幔热流关系,计算分析了松辽盆地深、浅地层热量配分比例,莫霍面与居里面深度,盆地生热率结构。结果表明:①松辽盆地浅部地壳的地温场以传导传热为主; ②盆地中心莫霍面上隆,但上地幔热流处于衰减回落状态,上地幔供热不足导致莫霍面温度相对周缘要低; ③盆地中心居里面较深,与上地幔热松弛相关; 居里面之上,受花岗岩较高放射性生热率影响,地温梯度较高; 居里面之下,受地幔热流衰减回落影响,地温梯度下降。综上所述,中央坳陷区上地幔处于热流衰减的热松弛阶段,其对地表热流贡献小于上地壳放射性生热对地表热流的贡献,松辽盆地中部地表热异常成因主要是地壳上部的花岗岩放射性生热。
Abstract:
The Songliao Basin is a key geothermal resource area for medium and low temperature geothermal energy in China. Using the latest seismic imaging data, combined with the gravity, geomagnetism and geothermal observation data and the relationship between basin tectonic evolution and mantle heat flow, the heat distribution ratio of deep and shallow strata, the depth of Moho surface and Curie surface, and the heat generation rate structure in Songliao Basin were calculated. The results show that ① the geothermal field of the shallow crust in Songliao Basin is dominated by conductive heat transfer; ② although the Moho surface in the center of the basin is uplifted, the heat flow of the upper mantle is in a state of decay and decline, and the heating of the upper mantle is insufficient, resulting in a relatively low temperature of the Moho surface; ③ the Curie surface in the center of the basin is deeper, which is related to the thermal relaxation of the upper mantle; above the Curie surface, the geothermal gradient is high due to the higher radioactive heat generation rate of granite; under the Curie surface, the geothermal gradient decreases due to the attenuation and fall of the mantle heat flow. It is considered that the upper mantle in the central depression is in the thermal relaxation stage of heat flow attenuation, and its contribution to the surface heat flow is less than that of the radioactive heat generation in the upper crust. The origin of surface thermal anomaly in the central Songliao Basin is mainly the radioactive heat generation of granite in the upper crust.

参考文献/References:

[1] 汪集暘.地热学及其应用[M].北京:科学出版社,2015.
WANG Ji-yang.Geothermics and Its Applications[M].Beijing:Science Press,2015.
[2] 张 健,方 桂,何雨蓓.中国东部地热异常区深层高温分布特征与动力学背景[J].地学前缘,2023,30(2):316-332.
ZHANG Jian,FANG Gui,HE Yu-bei.The Deep High Temperature Characteristics and Geodynamic Background of Geothermal Anomaly Areas in Eastern China[J].Earth Science Frontiers,2023,30(2):316-332.
[3] 施亦做,王社教,肖红平,等.基于三维地质建模的松辽盆地北部地温场模拟[J].天然气工业,2022,42(4):46-53.
SHI Yi-zuo,WANG She-jiao,XIAO Hong-ping,et al.3D GeoModeller-based Simulation of the Geothermal Field in the Northern Songliao Basin[J].Natural Gas Industry,2022,42(4):46-53.
[4] 汪集暘,邱楠生,胡圣标,等.中国油田地热研究的进展和发展趋势[J].地学前缘,2017,24(3):1-12.
WANG Ji-yang,QIU Nan-sheng,HU Sheng-biao,et al.Advancement and Developmental Trend in the Geothermics of Oil Fields in China[J].Earth Science Frontiers,2017,24(3):1-12.
[5] 王社教,李 峰,闫家泓,等.油田地热资源评价方法及应用[J].石油学报,2020,41(5):553-564.
WANG She-jiao,LI Feng,YAN Jia-hong,et al.Eva-luation Methods and Application of Geothermal Resources in Oilfields[J].Acta Petrolei Sinica,2020,41(5):553-564.
[6] 瞿雪姣,杨立伟,薛 璇,等.松辽盆地白垩系大陆科学钻探松科2井:井底温度、地层压力预测[J].地学前缘,2017,24(1):257-264.
QU Xue-jiao,YANG Li-wei,XUE Xuan,et al.Prediction of the Bottom Hole Geotemperature,Formation Pressure and Formation Fracture Pressure of the Continental Scientific Drilling of Cretaceous Songliao Basin(SK2)[J].Earth Science Frontiers,2017,24(1):257-264.
[7] SHI Y Z,JIANG G Z,ZHANG X Y,et al.Present Temperature Field Characterization and Geothermal Resource Assessment in the Harbin Area,Northeast China[J].Energy Exploration & Exploitation,2019,37(2):834-848.
[8] SHI Y Z,JIANG G Z,SHI S M,et al.Terrestrial Heat Flow and Its Geodynamic Implications in the Northern Songliao Basin,Northeast China[J].Geophysical Journal International,2021,229(2):962-983.
[9] 谭世燕,石义强,赵育捷.松辽盆地地热资源的形成与远景评价[J].世界地质,2001,20(2):155-160,201.
TAN Shi-yan,SHI Yi-qiang,ZHAO Yu-jie.The Formation and Prospective Evaluation of Geothermal Resources in the Songliao Basin[J].Global Geology,2001,20(2):155-160,201.
[10] 施 龙,李自安,施尚明.松辽盆地杜蒙地区地热田的形成及资源量[J].大庆石油地质与开发,2004,23(3):26-28.
SHI Long,LI Zi-an,SHI Shang-ming.Geothermal Reservoir-forming and Geothermal Resources App-raisal of Dumeng Area in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2004,23(3):26-28.
[11] 娄 洪,闵丽霏,黄 林,等.松辽盆地干热岩地热资源潜力初探[J].矿产保护与利用,2014(1):10-14.
LOU Hong,MIN Li-fei,HUANG Lin,et al.Study on Potential of Geothermal Resources of Hot Dry Rock in Songliao Basin[J].Conservation and Utilization of Mineral Resources,2014(1):10-14.
[12] 鲍新华,张 宇,李 野,等.松辽盆地增强型地热系统开发选区评价[J].吉林大学学报(地球科学版),2017,47(2):564-572.
BAO Xin-hua,ZHANG Yu,LI Ye,et al.Evaluation of Development Selection for Enhanced Geothermal System in Songliao Basin[J].Journal of Jilin University(Earth Science Edition),2017,47(2):564-572.
[13] 裴发根,何梅兴,方 慧,等.基于模糊数学法的松辽盆地深层地热资源潜力评价[J].地球科学,2023,48(3):1058-1079.
PEI Fa-gen,HE Mei-xing,FANG Hui,et al.Evaluation of Deep Geothermal Resources Potential in the Songliao Basin Based on the Fuzzy Mathematics[J].Earth Science,2023,48(3):1058-1079.
[14] 郭昂青.松辽盆地北部热储体系特征及开发利用[J].地质与资源,2016,25(4):380-385.
GUO Ang-qing.Characteristics and Development of the Thermal Storage System in the North of Songliao Basin[J].Geology and Resources,2016,25(4):380-385.
[15] 潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质,2009,36(1):1-28.
PAN Gui-tang,XIAO Qing-hui,LU Song-nian,et al.Subdivision of Tectonic Units in China[J].Geology in China,2009,36(1):1-28.
[16] LIU J Q,HAN J T,FYFE W S.Cenozoic Episodic Volcanism and Continental Rifting in Northeast China and Possible Link to Japan Sea Development as Revealed from K-Ar Geochronology[J].Tectonophy-sics,2001,339(3/4):385-401.
[17] 刘嘉麒,陈双双,郭文峰,等.长白山火山研究进展[J].矿物岩石地球化学通报,2015,34(4):710-723.
LIU Jia-qi,CHEN Shuang-shuang,GUO Wen-feng,et al.Research Advances in the Mt.Changbai Volcano[J].Bulletin of Mineralogy,Petrology and Geoche-mistry,2015,34(4):710-723.
[18] 冯志强,董 立,童 英,等.蒙古—鄂霍茨克洋东段关闭对松辽盆地形成与演化的影响[J].石油与天然气地质,2021,42(2):251-264.
FENG Zhi-qiang,DONG Li,TONG Ying,et al.Impacts of the Closure of Eastern Mongolia-Okhotsk Ocean on Formation and Evolution of Songliao Basin[J].Oil & Gas Geology,2021,42(2):251-264.
[19] 金 旭,江原幸雄,许惠平.中国满洲里—绥芬河热流断面[J].科学通报,1995,40(2):161-163.
JIN Xu,JIANYUAN Xing-xiong,XU Hui-ping.Heat Flow Section from Manzhouli to Suifenhe in China[J].Chinese Science Bulletin,1995,40(2):161-163.
[20] 刘耀光.松辽盆地地热场特征与油气勘探的关系[J].石油勘探与开发,1982,9(3):26-31.
LIU Yao-guang.Relation Between Characteristic of Geothermal Field and Hydrocarbon Occurrence in Songliao Basin[J].Petroleum Exploration and Deve-lopment,1982,9(3):26-31.
[21] 吴乾蕃,谢毅真.松辽盆地大地热流[J].地震地质,1985,7(2):59-64.
WU Qian-fan,XIE Yi-zhen.Geothermal Heat Flow in the Songhuajiang-Liaoning Basin[J].Seismology and Geology,1985,7(2):59-64.
[22] 李志安.松辽盆地地幔热流的演化特征[J].大地构造与成矿学,1995,19(2):104-112.
LI Zhi-an.Evolutionary Features of Mantle Heat Flux in Songliao Basin[J].Geotectonica et Metallogenia,1995,19(2):104-112.
[23] HAN S C,ZHANG H J,XIN H L,et al.USTClitho2.0:Updated Unified Seismic Tomography Models for Continental China Lithosphere from Joint Inversion of Body-wave Arrival Times and Surface-wave Dispersion Data[J].Seismological Research Letters,2021,93(1):201-215.
[24] RYBACH L,BUNTEBARTH G.Relationships Between the Petrophysical Properties Density,Seismic Velocity,Heat Generation,and Mineralogical Constitution[J].Earth and Planetary Science Letters,1982,57(2):367-376.
[25] 姜光政.中国东北地区大地热流测量与岩石圈热结构[D].北京:中国科学院大学,2017.
JIANG Guang-zheng.Heat Flow Measurement and Lithospheric Thermal Structure in Northeast China[D].Beijing:University of Chinese Academy of Sciences,2017.
[26] 丁海涛,王家林,许惠平,等.利用大地热流估算松辽盆地岩石圈深度[J].同济大学学报(自然科学版),2004,32(9):1149-1152.
DING Hai-tao,WANG Jia-lin,XU Hui-ping,et al.Using Heat Flow to Estimate Lithosphere Depth of Songliao Basin,North China[J].Journal of Tongji University(Natural Science),2004,32(9):1149-1152.
[27] BHATTACHARYYA B K,LEU L K.Analysis of Magnetic Anomalies over Yellowstone National Park:Mapping of Curie Point Isothermal Surface for Geothermal Reconnaissance[J].Journal of Geophysical Research:Solid Earth and Planets,1975,80(32):4461-4465.
[28] BLAKELY R J.Curie Temperature Isotherm Analysis and Tectonic Implications of Aeromagnetic Data from Nevada[J].Journal of Geophysical Research:Solid Earth,1988,93(B10):11817-11832.
[29] TANAKA A,OKUBO Y,MATSUBAYASHI O.Curie Point Depth Based on Spectrum Analysis of the Magnetic Anomaly Data in East and Southeast Asia[J].Tectonophysics,1999,306(3/4):461-470.
[30] BANSAL A R,GABRIEL G,DIMRI V P,et al.Estimation of Depth to the Bottom of Magnetic Sources by a Modified Centroid Method for Fractal Distribution of Sources:An Application to Aeromagnetic Data in Germany[J].Geophysics,2011,76(3):11-22.
[31] NWANKWO L I.Estimation of Depths to the Bottom of Magnetic Sources and Ensuing Geothermal Para-meters from Aeromagnetic Data of Upper Sokoto Basin,Nigeria[J].Geothermics,2015,54:76-81.
[32] LI C F,LU Y,WANG J.A Global Reference Model of Curie-point Depths Based on EMAG2[J].Scientific Reports,2017,7:45129.
[33] 熊盛青,杨 海,丁燕云,等.中国陆域居里等温面深度特征[J].地球物理学报,2016,59(10):3604-3617.
XIONG Sheng-qing,YANG Hai,DING Yan-yun,et al.Characteristics of Chinese Continent Curie Point Isotherm[J].Chinese Journal of Geophysics,2016,59(10):3604-3617.
[34] 胡旭芝,徐鸣洁,谢晓安,等.中国东北地区航磁特征及居里面分析[J].地球物理学报,2006,49(6):1674-1681.
HU Xu-zhi,XU Ming-jie,XIE Xiao-an,et al.A Cha-racteristic Analysis of Aeromagnetic Anomalies and Curie Point Isotherms in Northeast China[J].Chinese Journal of Geophysics,2006,49(6):1674-1681.
[35] 张 健,王蓓羽,唐显春,等.华南陆缘高热流区的壳幔温度结构与动力学背景[J].地球物理学报,2018,61(10):3917-3932.
ZHANG Jian,WANG Bei-yu,TANG Xian-chun,et al.Temperature Structure and Dynamic Background of Crust and Mantle Beneath the High Heat Flow Area of the South China Continental Margin[J].Chinese Journal of Geophysics,2018,61(10):3917-3932.
[36] 李一凡.中国大陆西部及东北地区地壳生热率研究[D].北京:中国地质大学,2022.
LI Yi-fan.A Study on the Crustal Heat Generation Rate in the Western and Northeastern Regions of Chinese Mainland[D].Beijing:China University of Geosciences,2022.
[37] HASTEROK D,GARD M,WEBB J.On the Radiogenic Heat Production of Metamorphic,Igneous,and Sedimentary Rocks[J].Geoscience Frontiers,2018,9(6):1777-1794.
[38] HASTEROK D,WEBB I.On the Radiogenic Heat Production of Igneous Rocks[J].Geoscience Frontiers,2017,8(5):919-940.
[39] 汪 洋,汪集旸,熊亮萍,等.中国大陆主要地质构造单元岩石圈地热特征[J].地球学报,2001,22(1):17-22.
WANG Yang,WANG Ji-yang,XIONG Liang-ping,et al.Lithospheric Geothermics of Major Geotectonic Units in China Mainland[J].Acta Geoscientia Sinica,2001,22(1):17-22.

相似文献/References:

[1]张永红,刘冰,吴宏安,等.雄安新区2012~2016年地面沉降InSAR监测[J].地球科学与环境学报,2018,40(05):652.
 ZHANG Yong-hong,LIU Bing,WU Hong-an,et al.Ground Subsidence in Xiong’an New Area from 2012 to 2016 Monitored by InSAR Technique[J].Journal of Earth Sciences and Environment,2018,40(02):652.
[2]张 健,董 淼,王蓓羽,等.陕西关中盆地地热资源及壳幔温度结构的地球物理分析[J].地球科学与环境学报,2021,43(01):150.[doi:10.19814/j.jese.2020.07005]
 ZHANG Jian,DONG Miao,WANG Bei-yu,et al.Geophysical Analysis of Geothermal Resources and Temperature Structure of Crust and Upper Mantle Beneath Guanzhong Basin of Shaanxi, China[J].Journal of Earth Sciences and Environment,2021,43(02):150.[doi:10.19814/j.jese.2020.07005]

备注/Memo

备注/Memo:
收稿日期:2022-07-20; 修回日期:2022-08-07
基金项目:国家重点研发计划项目(2021YFA0716002); 国家自然科学基金项目(42176052); 中国科学院战略性先导科技专项项目(XDB42020104)
作者简介:张 健(1963-),男,河南项城人,教授,博士研究生导师,理学博士,E-mail:zhangjian@ucas.ac.cn。
更新日期/Last Update: 2023-05-20