|本期目录/Table of Contents|

[1]瞿 伟,刘祥斌,李久元,等.改进哈里斯鹰优化算法与BP神经网络组合的滑坡位移高精度预测模型[J].地球科学与环境学报,2023,45(03):522-534.[doi:10.19814/j.jese.2022.11062]
 QU Wei,LIU Xiang-bin,LI Jiu-yuan,et al.High-precision Landslide Displacement Prediction Model Based on IHHO Algorithm Combined with BP Neural Network[J].Journal of Earth Sciences and Environment,2023,45(03):522-534.[doi:10.19814/j.jese.2022.11062]
点击复制

改进哈里斯鹰优化算法与BP神经网络组合的滑坡位移高精度预测模型(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第03期
页码:
522-534
栏目:
大地测量、遥感与地学大数据
出版日期:
2023-05-15

文章信息/Info

Title:
High-precision Landslide Displacement Prediction Model Based on IHHO Algorithm Combined with BP Neural Network
文章编号:
1672-6561(2023)03-0522-13
作者:
瞿 伟刘祥斌李久元王宇豪李 达
(长安大学 地质工程与测绘学院,陕西 西安 710054)
Author(s):
QU Wei LIU Xiang-bin LI Jiu-yuan WANG Yu-hao LI Da
(School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China)
关键词:
黄土滑坡 位移预测 改进哈里斯鹰优化算法 BP神经网络 Levy变异 局部增强 随机化Halton序列 黑方台
Keywords:
loess landslide displacement predication IHHO algorithm BP neural network Levy variation local enhancement randomized Halton sequence Heifangtai
分类号:
P228; P642.22
DOI:
10.19814/j.jese.2022.11062
文献标志码:
A
摘要:
开展滑坡位移高精度预测研究对于滑坡灾害的防灾预警具有重要意义。针对哈里斯鹰优化算法(HHO)搜索精度低且会陷入局部最优的问题,对其进行改进并进一步与BP神经网络组合,同时有效兼顾滑坡外部影响因子,发展了一种改进哈里斯鹰优化算法(IHHO)与BP神经网络组合(IHHO-BP)的滑坡位移高精度预测模型。结合我国典型黄土滑坡——甘肃黑方台党川滑坡HF08、HF05和HF09等3个监测点的北斗/GNSS实测数据,验证了IHHO-BP模型在3个实测数据集中的位移预测精度均优于单一BP神经网络模型,以及哈里斯鹰优化算法、麻雀搜索算法(SSA)、粒子群算法(PSO)、遗传算法(GA)与BP神经网络组合的预测模型。结果表明:引入Levy变异、局部增强和随机化Halton序列种群初始化策略的改进哈里斯鹰优化算法,可有效解决哈里斯鹰优化算法搜索精度低且会陷入局部最优的问题; IHHO-BP模型具有更好的泛化能力,可有效提升滑坡位移的预测精度,该组合预测模型具有更好的推广应用价值。
Abstract:
High-precision prediction of landslide displacement has important reference value for landslide disaster prevention and early warning. Aiming at the problem that the Harris Hawks optimization(HHO)algorithm has low search accuracy and falls into local optimum, while effectively taking into account the external influence factors of landslides, a high-precision landslide displacement prediction model was established based on improved Harris Hawks optimization(IHHO)algorithm combined with BP neural network(IHHO-BP). Combined with the measured Beidou/GNSS data(HF08, HF05 and HF09 monitoring points)of the Dangchuan landslide in Heifangtai area of Gansu, which is a typical loess landslide in China, the displacement prediction accuracy of IHHO-BP model is verified to be better than that of the single BP neural network, and the combination prediction models of HHO, sparrow search algorithm(SSA), particle swarm optimization(PSO), genetic algorithm(GA)and BP neural network. The results show that IHHO algorithm, which introduces Levy variation, local enhancement and randomized Halton sequence population initialization strategy, can effectively solve the problem that HHO algorithm has low search accuracy and falls into local optimization; the IHHO-BP model has better generalization ability and can effectively improve the prediction accuracy of landslide displacement, which is also has better popularization and application value.

参考文献/References:

[1] ZHANG F Y,PENG J B,HUANG X W,et al.Ha-zard Assessment and Mitigation of Non-seismically Fatal Landslides in China[J].Natural Hazards,2021,106(1):785-804.
[2] 李振洪,宋 闯,余 琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版),2019,44(7):967-979.
LI Zhen-hong,SONG Chuang,YU Chen,et al.Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring:Challenges and Solutions[J].Geomatics and Information Science of Wuhan University,2019,44(7):967-979.
[3] 王佳彤,胡羽丰,李振洪.基于GPS双频信号增强的雪水当量估计[J].地球科学与环境学报,2022,44(5):789-801.
WANG Jia-tong,HU Yu-feng,LI Zhen-hong.Estimation of Snow Water Equivalent Based on GPS Dual-frequency Signal Enhancement[J].Journal of Earth Sciences and Environment,2022,44(5):789-801.
[4] 兰恒星,周成虎,伍法权,等.GIS支持下的降雨型滑坡危险性空间分析预测[J].科学通报,2003,48(5):507-512.
LAN Heng-xing,ZHOU Cheng-hu,WU Fa-quan,et al.Spatial Analysis and Prediction of Rainfall-induced Landslide Hazard Based on GPS[J].Chinese Science Bulletin,2003,48(5):507-512.
[5] LAN H X,ZHOU C H,WANG L J,et al.Landslide Hazard Spatial Analysis and Prediction Using GIS in the Xiaojiang Watershed,Yunnan,China[J].Engineering Geology,2004,76(1/2):109-128.
[6] LI L P,LAN H X,GUO C B,et al.A Modified Frequency Ratio Method for Landslide Susceptibility Assessment[J].Landslides,2017,14(2):727-741.
[7] LI L P,LAN H X.Integration of Spatial Probability and Size in Slope-unit-based Landslide Susceptibility Assessment:A Case Study[J].International Journal of Environmental Research and Public Health,2020,17(21):8055.
[8] LAN H X,TIAN N M,LI L P,et al.Kinematic-based Landslide Risk Management for the Sichuan-Tibet Grid Interconnection Project(STGIP)in China[J].Engineering Geology,2022,308:106823.
[9] ZHOU C,YIN K L,CAO Y,et al.Displacement Prediction of Step-like Landslide by Applying a Novel Kernel Extreme Learning Machine Method[J].Landslides,2018,15(11):2211-2225.
[10] 张振坤,张冬梅,李 江,等.基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J].岩土力学,2022,43(增2):477-486,507.
ZHANG Zhen-kun,ZHANG Dong-mei,LI Jiang,et al.LSTM-MH-SA Landslide Displacement Prediction Model Based on Multi-head Self-attention Mechanism[J].Rock and Soil Mechanics,2022,43(S2):477-486,507.
[11] 王 利,岳 聪,舒 宝,等.基于混沌时间序列的黄土滑坡变形预测方法及应用[J].地球科学与环境学报,2021,43(5):917-925.
WANG Li,YUE Cong,SHU Bao,et al.Chaotic Time Series Based Surface Displacement Prediction Method and Application to Loess Landslides[J].Journal of Earth Sciences and Environment,2021,43(5):917-925.
[12] ZHANG Y G,TANG J,HE Z Y,et al.A Novel Displacement Prediction Method Using Gated Recurrent Unit Model with Time Series Analysis in the Erdaohe Landslide[J].Natural Hazards,2021,105(1):783-813.
[13] 范 千,花向红.基于相空间重构与支持向量机预测滑坡位移的一种新方法[J].武汉大学学报(信息科学版),2009,34(2):248-251.
FAN Qian,HUA Xiang-hong.A Novel Method for Forecasting Landslide Displacement Based on Phase Space Reconstruction and Support Vector Machine[J].Geomatics and Information Science of Wuhan University,2009,34(2):248-251.
[14] 邢保印,张炜怡,章广成,等.基于变形速率分解的阶跃型滑坡预测:以呷爬滑坡为例[J].岩石力学与工程学报,2023,42(3):685-697.
XING Bao-yin,ZHANG Wei-yi,ZHANG Guang-cheng,et al.Prediction of Step-type Landslide Based on Deformation Rate Decomposition:A Case Study of Gapa Landslide[J].Chinese Journal of Rock Mechanics and Engineering,2023,42(3):685-697.
[15] LI Y,FU P,JI W F,et al.Predictive Method of Nonlinear System Based on Artificial Neural Network and SVM[J].Oxidation Communications,2016,39(1A):1226-1235.
[16] 郭子正,殷坤龙,黄发明,等.基于地表监测数据和非线性时间序列组合模型的滑坡位移预测[J].岩石力学与工程学报,2018,37(增1):3392-3399.
GUO Zi-zheng,YIN Kun-long,HUANG Fa-ming,et al.Landslide Displacement Prediction Based on Surface Monitoring Data and Nonlinear Time Series Combination Model[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(S1):3392-3399.
[17] 成 枢,马卫骄,高秀明,等.CPSO-BP组合优化模型的滑坡位移预测[J].测绘科学,2019,44(10):65-71.
CHENG Shu,MA Wei-jiao,GAO Xiu-ming,et al.Landslide Displacement Prediction Based on CPSO-BP Combined Optimization Model[J].Science of Surveying and Mapping,2019,44(10):65-71.
[18] CHEN H Q,ZENG Z G.Deformation Prediction of Landslide Based on Improved Back-propagation Neural Network[J].Cognitive Computation,2013,5(1):56-62.
[19] ZHU C H,ZHANG J J,LIU Y,et al.Comparison of GA-BP and PSO-BP Neural Network Models with Initial BP Model for Rainfall-induced Landslides Risk Assessment in Regional Scale:A Case Study in Sichuan,China[J].Natural Hazards,2020,100(1):173-204.
[20] 宋宜祥,张晓波,黄 达.基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测[J].地质科技通报,2022,41(2):130-138.
SONG Yi-xiang,ZHANG Xiao-bo,HUANG Da.Stability Prediction of Landslide Dams Based on SSA-Adam-BP Neural Network Model[J].Bulletin of Geological Science and Technology,2022,41(2):130-138.
[21] 王晨辉,赵贻玖,郭 伟,等.滑坡位移EEMD-SVR预测模型[J].测绘学报,2022,51(10):2196-2204.
WANG Chen-hui,ZHAO Yi-jiu,GUO Wei,et al.Displacement Prediction Model of Landslide Based on Ensemble Empirical Mode Decomposition and Support Vector Regression[J].Acta Geodaetica et Cartogra-phica Sinica,2022,51(10):2196-2204.
[22] 汤 俊,李垠健,高 鑫.基于CEEMDAN的GNSS变形监测去噪方法[J].大地测量与地球动力学,2021,41(4):408-412.
TANG Jun,LI Yin-jian,GAO Xin.GNSS Deformation Monitoring Denoising Method Based on CEEMDAN[J].Journal of Geodesy and Geodynamics,2021,41(4):408-412.
[23] 李国强.新型人工智能技术研究及其在锅炉燃烧优化中的应用[D].秦皇岛:燕山大学,2013.
LI Guo-qiang.Research of a Novel Artificial Intelligent Technology and Its Application to Boiler Combustion Optimization[D].Qinhuangdao:Yanshan University,2013.
[24] HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris Hawks Optimization(HHO):Algorithm and Applications[J].Future Generation Computer Systems,2019,97:849-872.
[25] KOCIS L,WHITEN W J.Computational Investigations of Low-discrepancy Sequences[J].ACM Transactions on Mathematical Software,1997,23(2):266-294.
[26] 朱 庆,曾浩炜,丁雨淋,等.重大滑坡隐患分析方法综述[J].测绘学报,2019,48(12):1551-1561.
ZHU Qing,ZENG Hao-wei,DING Yu-lin,et al.A Review of Major Potential Landslide Hazards Analysis[J].Acta Geodaetica et Cartographica Sinica,2019,48(12):1551-1561.
[27] 吴玮江,宿 星,冯乐涛,等.甘肃黑方台滑坡类型与活动特征研究[J].冰川冻土,2019,41(6):1483-1495.
WU Wei-jiang,SU Xing,FENG Le-tao,et al.The Study on Landslide Types and Activity Characteristics in Heifangtai,Gansu Province[J].Journal of Gla-ciology and Geocryology,2019,41(6):1483-1495.
[28] 许 强,彭大雷,何朝阳,等.突发型黄土滑坡监测预警理论方法研究:以甘肃黑方台为例[J].工程地质学报,2020,28(1):111-121.
XU Qiang,PENG Da-lei,HE Chao-yang,et al.Theory and Method of Monitoring and Early Warning for Sudden Loess Landslide:A Case Study at Heifangtai Terrace[J].Journal of Engineering Geology,2020,28(1):111-121.
[29] 邓冬梅,梁 烨,王亮清,等.基于集合经验模态分解与支持向量机回归的位移预测方法:以三峡库区滑坡为例[J].岩土力学,2017,38(12):3660-3669.
DENG Dong-mei,LIANG Ye,WANG Liang-qing,et al.Displacement Prediction Method Based on Ensemble Empirical Mode Decomposition and Support Vector Machine Regression:A Case of Landslides in Three Gorges Reservoir Area[J].Rock and Soil Mechanics,2017,38(12):3660-3669.
[30] 习 羽,李同录,邢鲜丽.灌渠渗漏诱发的黄土滑坡泥流触发机理分析[J].地球科学与环境学报,2017,39(1):135-142.
XI Yu,LI Tong-lu,XING Xian-li.Analysis of the Tri-ggering Mechanism of a Loess Flowslide Induced by Water Canal Leakage[J].Journal of Earth Sciences and Environment,2017,39(1):135-142.
[31] 张凡琛,谷天峰,孔嘉旭,等.基于HYDRUS模型的灌溉和降雨条件下黑方台斜坡土壤水分变化研究[J].干旱区资源与环境,2021,35(6):110-116.
ZHANG Fan-chen,GU Tian-feng,KONG Jia-xu,et al.Changes of Soil Moisture in Heifangtai Slope Under Irrigation and Rainfall[J].Journal of Arid Land Resources and Environment,2021,35(6):110-116.
[32] 凌 晴,张 勤,张 静,等.融合工程地质资料与GNSS高精度监测信息的黑方台党川黄土滑坡稳定性研究[J].测绘学报,2022,51(10):2226-2238.
LING Qing,ZHANG Qin,ZHANG Jing,et al.Stabi-lity Evaluation of Dangchuan Loess Landslide in Heifangtai Based on Integration of Engineering Geological Data and GNSS High-precision Monitoring Information[J].Acta Geodaetica et Cartographica Sinica,2022,51(10):2226-2238.
[33] 李 广,张明礼,叶伟林,等.甘肃黑方台坡面冻融特征及冻结滞水效应分析[J].干旱区资源与环境,2021,35(6):117-122.
LI Guang,ZHANG Ming-li,YE Wei-lin,et al.Analysis on Freezing-thawing Characteristics and Frozen Stagnant Water Effect of Heifangtai Slope in Gansu Province[J].Journal of Arid Land Resources and Environment,2021,35(6):117-122.
[34] BIAN S Q,CHEN G,ZENG R Q,et al.Post-failure Evolution Analysis of an Irrigation-induced Loess Landslide Using Multiple Remote Sensing Approaches Integrated with Time-lapse ERT Imaging:Lessons from Heifangtai,China[J].Landslides,2022,19(5):1179-1197.
[35] 黄发明,汪 洋,董志良,等.基于灰色关联度模型的区域滑坡敏感性评价[J].地球科学,2019,44(2):664-676.
HUANG Fa-ming,WANG Yang,DONG Zhi-liang,et al.Regional Landslide Susceptibility Mapping Ba-sed on Grey Relational Degree Model[J].Earth Science,2019,44(2):664-676.
[36] 李 璐,瞿 伟,张 勤,等.优化循环神经网络在滑坡位移预测中的应用[J].大地测量与地球动力学,2022,42(6):594-600.
LI Lu,QU Wei,ZHANG Qin,et al.Application of Optimized Recurrent Neural Network in Prediction of Landslide Displacement[J].Journal of Geodesy and Geodynamics,2022,42(6):594-600.
[37] 李 达,瞿 伟,张 勤,等.融合多层感知机和优化支持向量回归的滑坡位移预测模型[J].武汉大学学报(信息科学版),2022,DOI:10.13203/j.whugis-20210703.
LI Da,QU Wei,ZHANG Qin,et al.Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J].Geomatics and Information Science of Wuhan University,2022,DOI:10.13203/j.whugis20210703.

相似文献/References:

[1]李同录,徐 平,李 萍.一种用于非饱和黄土钻探的双管螺旋钻[J].地球科学与环境学报,2009,31(02):185.
 LI Tong-lu,XU Ping,LI Ping.A Dual Tube Auger for Unsaturated Loess Drilling[J].Journal of Earth Sciences and Environment,2009,31(03):185.
[2]郑亚萌,戴福初.灌溉淋滤对原状黄土物理力学性质的影响[J].地球科学与环境学报,2017,39(04):575.
 ZHENG Ya-meng,DAI Fu-chu.Effect of Irrigation Leaching on Physical and Mechanical Properties of Undisturbed Loess[J].Journal of Earth Sciences and Environment,2017,39(03):575.
[3]王 利,岳 聪,舒 宝*,等.基于混沌时间序列的黄土滑坡变形预测方法及应用[J].地球科学与环境学报,2021,43(05):917.[doi:10.19814/j.jese.2021.03037]
 WANG Li,YUE Cong,SHU Bao*,et al.Chaotic Time Series Based Surface Displacement Prediction Method and Application to Loess Landslides[J].Journal of Earth Sciences and Environment,2021,43(03):917.[doi:10.19814/j.jese.2021.03037]
[4]孟振江,曹一迪,康尘云,等.降雨促发黄土滑坡的启动机制模拟[J].地球科学与环境学报,2023,45(03):474.[doi:10.19814/j.jese.2022.11004]
 MENG Zhen-jiang,CAO Yi-di,KANG Chen-yun,et al.Simulation of the Initiation Mechanism of Loess Landslide Promoted by Rainfall[J].Journal of Earth Sciences and Environment,2023,45(03):474.[doi:10.19814/j.jese.2022.11004]
[5]王 利,张懿恺,舒 宝*,等.基于特征优选和逐步回归的黄土滑坡监测数据融合改进方法[J].地球科学与环境学报,2023,45(03):511.[doi:10.19814/j.jese.2022.09064]
 WANG Li,ZHANG Yi-kai,SHU Bao*,et al.Improved Method for Fusion of Loess Landslide Monitoring Data Based on Feature Selection and Stepwise Regression[J].Journal of Earth Sciences and Environment,2023,45(03):511.[doi:10.19814/j.jese.2022.09064]

备注/Memo

备注/Memo:
收稿日期:2022-11-22; 修回日期:2023-02-14
基金项目:国家自然科学基金项目(42174006,42090055); 陕西省杰出青年科学基金项目(2022JC-18); 中央高校基本科研业务费专项资金项目(300102263201)
作者简介:瞿 伟(1982-),男,江苏连云港人,教授,博士研究生导师,工学博士,博士后,E-mail:quwei@chd.edu.cn。
更新日期/Last Update: 2023-05-30