[1] SHEN C B,ASANTE-OKYERE S,YEVENYO ZIGGAH Y,et al.Group Method of Data Handling(GMDH)Lithology Identification Based on Wavelet Analy-sis and Dimensionality Reduction as Well Log Data Pre-processing Techniques[J].Energies,2019,12(8):1509.
[2] 张 涛,李艳萍,刘晓宇,等.基于自适应粒子群优化最小二乘支持向量机的深层变质岩测井岩性识别[J].地球物理学进展,2023,38(1):382-392.
ZHANG Tao,LI Yan-ping,LIU Xiao-yu,et al.Lithology Interpretation of Deep Metamorphic Rocks with Well Logging Based on APSO-LSSVM Algori-thm[J].Progress in Geophysics,2023,38(1):382-392.
[3] 马陇飞,萧汉敏,陶敬伟,等.基于梯度提升决策树算法的岩性智能分类方法[J].油气地质与采收率,2022,29(1):21-29.
MA Long-fei,XIAO Han-min,TAO Jing-wei,et al.Intelligent Lithology Classification Method Based on GBDT Algorithm[J].Petroleum Geology and Reco-very Efficiency,2022,29(1):21-29.
[4] 刘 昊,朱丹丹,陈 冬,等.基于聚类算法的岩性预分类方法研究[C]∥西安石油大学.2018 IPPTC国际石油石化技术会议论文集.西安:西安石油大学,2018:387-396.
LIU Hao,ZHU Dan-dan,CHEN Dong,et al.Resear-ch on Lithology Pre-classification Method Based on Clustering Algorithm[C]∥Xi'an Shiyou University.Proceedings of 2018 IPPTC International Petroleum and Petrochemical Technology Conference.Xi'an:Xi'an Shiyou University,2018:387-396.
[5] ZHOU L,ZHONG F Y,YAN J C,et al.Prestack Inversion Identification of Organic Reef Gas Reservoirs of Permian Changxing Formation in Damaoping Area,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2020,47(1):89-100.
[6] SALIM A M A,PAN H P,LUO M,et al.Integrated Log Interpretation in the Chinese Continental Scientific Drilling Main Hole(Eastern China):Lithology and Mineralization[J].Journal of Applied Sciences,2008,8(20):3593-3602.
[7] SAGGAF M M,NEBRIJA E L.Estimation of Litho-logies and Depositional Facies from Wire-line Logs[J].AAPG Bulletin,2000,84(10):1633-1646.
[8] 陈玉林,李戈理,杨智新,等.基于KNN算法识别合水地区长7储层岩性岩相[J].测井技术,2020,44(2):182-185.
CHEN Yu-lin,LI Ge-li,YANG Zhi-xin,et al.Identification of Lithology and Lithofacies of Chang-7 Reservoir in Heshui Area by KNN Algorithm[J].Well Logging Technology,2020,44(2):182-185.
[9] 徐 晗,姚孔轩,程丹仪,等.基于非开挖随钻检测系统与随机森林的地层岩性识别[J].地质科技通报,2021,40(5):272-280.
XU Han,YAO Kong-xuan,CHENG Dan-yi,et al.Stratigraphic Lithology Identification Based on No-dig Logging While Drilling System and Random Forest[J].Bulletin of Geological Science and Technology,2021,40(5):272-280.
[10] 冯 瑞,杨丽萍,侯成磊,等.基于随机森林的陕西省西安市近地表气温估算[J].地球科学与环境学报,2022,44(1):102-113.
FENG Rui,YANG Li-ping,HOU Cheng-lei,et al.Estimation of Near-surface Air Temperature in Xi'an City of Shaanxi Province,China Based on Random Forest[J].Journal of Earth Sciences and Environment,2022,44(1):102-113.
[11] 孙予舒,黄 芸,梁 婷,等.基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J].岩性油气藏,2020,32(4):98-106.
SUN Yu-shu,HUANG Yun,LIANG Ting,et al.Identification of Complex Carbonate Lithology by Logging Based on XGBoost Algorithm[J].Lithologic Reservoirs,2020,32(4):98-106.
[12] 罗仁泽,庹娟娟,倪华玲,等.基于改进集成学习的测井岩性识别方法研究[J].石油物探,2023,62(2):212-224.
LUO Ren-ze,TUO Juan-juan,NI Hua-ling,et al.Logging Lithology Identification Method Based on Improved Ensemble Learning[J].Geophysical Pro-specting for Petroleum,2023,62(2):212-224.
[13] 陈玉敏,魏 阳,常政威,等.基于遥感数据和XGBoost算法的31个城市NO2、CO2浓度比率变化特征[J].地球科学与环境学报,2023,45(6):1355-1367.
CHEN Yu-min,WEI Yang,CHANG Zheng-wei,et al.Variation Characteristics of Concentration Ratio of Nitrogen Dioxide and Carbon Dioxide in 31 Cities,China Based on Remote Sensing Data and XGBoost Algorithm[J].Journal of Earth Sciences and Environment,2023,45(6):1355-1367.
[14] 杨 笑,王志章,周子勇,等.基于参数优化AdaBoost算法的酸性火山岩岩性分类[J].石油学报,2019,40(4):457-467.
YANG Xiao,WANG Zhi-zhang,ZHOU Zi-yong,et al.Lithology Classification of Acidic Volcanic Rocks Ba-sed on Parameter-optimized AdaBoost Algorithm[J].Acta Petrolei Sinica,2019,40(4):457-467.
[15] AMIRGALIEV E,ISABAEV Z,ISKAKOV S,et al.Recognition of Rocks at Uranium Deposits by Using a Few Methods of Machine Learning[C]∥RHEE S Y,PARK J Y,INOUE A.Soft Computing in Machine Learning.Daejeon:PaiChai University,2014:33-40.
[16] YANG H J,PAN H P,MA H L,et al.Performance of the Synergetic Wavelet Transform and Modified K-means Clustering in Lithology Classification Using Nuclear Log[J].Journal of Petroleum Science and Engineering,2016,144:1-9.
[17] JOSHI D,PATIDAR A K,MISHRA A,et al.Prediction of Sonic Log and Correlation of Lithology by Comparing Geophysical Well Log Data Using Machine Learning Principles[J].GeoJournal,2021,DOI:10.1007/s10708-021-10502-6.
[18] DENG C X,PAN H P,FANG S N,et al.Support Vector Machine as an Alternative Method for Lithology Classification of Crystalline Rocks[J].Journal of Geophysics and Engineering,2017,14(2):341-349.
[19] 张树义,王 波,马尽文.基于深度卷积自编码器的岩性分类与识别[J].信号处理,2023,39(1):11-19.
ZHANG Shu-yi,WANG Bo,MA Jin-wen.Deep Convolutional Auto-encoder Based on Lithologic Classification and Recognition[J].Journal of Signal Processing,2023,39(1):11-19.
[20] HE M,GU H M,WAN H.Log Interpretation for Lithology and Fluid Identification Using Deep Neural Network Combined with MAHAKIL in a Tight Sandstone Reservoir[J].Journal of Petroleum Science and Engineering,2020,194:107498.
[21] IMAMVERDIYEV Y,SUKHOSTAT L.Lithological Facies Classification Using Deep Convolutional Neural Network[J].Journal of Petroleum Science and Engineering,2019,174:216-228.
[22] 蔡浩杰,韩海辉,张雨莲,等.基于地形特征融合的卷积神经网络滑坡识别[J].地球科学与环境学报,2022,44(3):568-579.
CAI Hao-jie,HAN Hai-hui,ZHANG Yu-lian,et al.Convolutional Neural Network Landslide Recognition Based on Terrain Feature Fusion[J].Journal of Earth Sciences and Environment,2022,44(3):568-579.
[23] LIN J,LI H,LIU N H,et al.Automatic Lithology Identification by Applying LSTM to Logging Data:A Case Study in X Tight Rock Reservoirs[J].IEEE Geoscience and Remote Sensing Letters,2021,18(8):1361-1365.
[24] 熊玄辰,曹俊兴,周 鹏,等.基于双向长短期记忆神经网络的岩相预测方法[J].成都理工大学学报(自然科学版),2021,48(2):226-234.
XIONG Xuan-chen,CAO Jun-xing,ZHOU Peng,et al.Lithofacies Prediction Method Based on Bidirectional Long Short Memory Neural Network[J].Journal of Chengdu University of Technology(Science & Technology Edition),2021,48(2):226-234.
[25] 陈钢花,张寓侠,王 军,等.双向长短时记忆神经网络在滩坝砂储层岩性识别中的应用[J].测井技术,2023,47(3):319-325.
CHEN Gang-hua,ZHANG Yu-xia,WANG Jun,et al.Application of BiLSTM in Lithology Identification of Beach-bar Sand Reservoir[J].Well Logging Techno-logy,2023,47(3):319-325.
[26] 王庆凯.基于长短期记忆网络和时空序列模型的岩性识别方法研究[D].秦皇岛:燕山大学,2022.
WANG Qing-kai.Research on Lithology Identification Method Based on LSTM and Spatio-temporal Sequence Model[D].Qinhuangdao:Yanshan University,2022.
[27] 罗 群,吴安彬,王井伶,等.中国北方页岩气成因类型、成气模式与勘探方向[J].岩性油气藏,2019,31(1):1-11.
LUO Qun,WU An-bin,WANG Jing-ling,et al.Gene-tic Types,Generation Models,and Exploration Direction of Shale Gas in Northern China[J].Lithologic Reservoirs,2019,31(1):1-11.
[28] SINGH H,SEOL Y,MYSHAKIN E M.Automated Well-log Processing and Lithology Classification by Identifying Optimal Features Through Unsupervised and Supervised Machine-learning Algorithms[J].SPE Journal,2020,25(5):2778-2800.
[29] KUSUMAPUTRI F H,ARIFIN A S.Anomaly Detection Based on NSL-KDD Using XGBoost with Optuna Tuning[C]∥ICBIR.2022 7th International Confe-rence on Business and Industrial Research(ICBIR).Bangkok:ICBIR,2022:586-591.
[30] AKIBA T,SANO S,YANASE T,et al.Optuna:A Next-generation Hyperparameter Optimization Fra-mework[C]∥TEREDESAI A,KUMAR V.KDD'19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:Association for Computing Machinery,2019:2623-2631.
[31] YU W N,KIM I Y,MECHEFSKE C.Analysis of Dif-ferent RNN Autoencoder Variants for Time Series Classification and Machine Prognostics[J].Mechanical Systems and Signal Processing,2021,149:107322.
[32] ZHANG J S,JIANG Y C,WU S M,et al.Prediction of Remaining Useful Life Based on Bidirectional Gated Recurrent Unit with Temporal Self-attention Me-chanism[J].Reliability Engineering & System Safety,2022,221:108297.
[33] 孙英健.深度学习时序分析在邻接盲井数据集石油储层识别中的应用[D].秦皇岛:燕山大学,2022.
SUN Ying-jian.Deep Learning Time-series Analysis for Petroleum Reservoir Identification in Adjacent Blind Well Datasets[D].Qinhuangdao:Yanshan University,2022.
[34] 陈云天.基于机器学习的测井曲线补全与生成研究[D].北京:北京大学,2020.
CHEN Yun-tian.Research on Well Log Completion and Generation Based on Machine Learning[D].Beijing:Peking University,2020.
[1]蔡浩杰,韩海辉,张雨莲,等.基于地形特征融合的卷积神经网络滑坡识别[J].地球科学与环境学报,2022,44(03):568.[doi:10.19814/j.jese.2021.12016]
CAI Hao-jie,HAN Hai-hui,ZHANG Yu-lian,et al.Convolutional Neural Network Landslide Recognition Based on Terrain Feature Fusion[J].Journal of Earth Sciences and Environment,2022,44(01):568.[doi:10.19814/j.jese.2021.12016]
[2]方 巍,齐媚涵.基于深度学习的高时空分辨率降水临近预报方法[J].地球科学与环境学报,2023,45(03):706.[doi:10.19814/j.jese.2023.01010]
FANG Wei,QI Mei-han.Precipitation Nowcasting Method with High Spatio-temporal Resolution Based on Deep Learning[J].Journal of Earth Sciences and Environment,2023,45(01):706.[doi:10.19814/j.jese.2023.01010]
[3]辛鲁斌,韩 玲*,李良志.基于多源数据融合的滑坡智能识别[J].地球科学与环境学报,2023,45(04):920.
XIN Lu-bin,HAN Ling*,LI Liang-zhi.Landslide Intelligent Recognition Based on Multi-source Data Fusion[J].Journal of Earth Sciences and Environment,2023,45(01):920.
[4]方巍*,张霄智,齐媚涵.MEPM模型:基于深度学习的多变量厄尔尼诺-南方涛动预测模型[J].地球科学与环境学报,2024,46(03):285.[doi:10.19814/j.jese.2023.08029]
FANG Wei*,ZHANG Xiao-zhi,QI Mei-han.MEPM: MultivariateENSOPredictionModel Based on Deep Learning[J].Journal of Earth Sciences and Environment,2024,46(01):285.[doi:10.19814/j.jese.2023.08029]